• Title/Summary/Keyword: thermogenesis

Search Result 56, Processing Time 0.027 seconds

Brown Adipose Tissue Thermogenesis and Obesity (Brown Adipose Tissue의 열생성 기능과 비만)

  • 양경미;서정숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.460-470
    • /
    • 1992
  • Thermogenesis in brown adipose tissue (BAT) can serve the animal in the regulation of its body temperature and of its body weight. Thermogenesis can be switched on by exposure of the animal to cold (non-shivering thermogenesis) or by overeating (diet-induced thermogenesis). BAT mitochondria are uniquely specialized for thermogenesis, possessing a specific proton conductance pathway that is regulated by the concentration of fatty acids in the cells of BAT. The level of fatty acids is in turn controlled by the lipolytic action of noradrenaline on the tissue. When the proton conductance pathway operates, the mitochondria are effectively uncoupled and exhibit extremely high rates of substrate oxidation with a great increase in heat production. Thus it is suggested that BAT is of importance in energy balance and human obesity treatment if thermogenesis can be stimulated specifically.

  • PDF

Effects of Panax ginseng extracts prepared at different steaming times on thermogenesis in rats

  • Cho, Hyung Taek;Kim, Jun Ho;Lee, Jin Hyup;Kim, Young Jun
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.347-352
    • /
    • 2017
  • Background: Panax ginseng (PG) has a long history of use in Asian medicine because of its multiple pharmacological activities. It has been considered that PG in a type of white ginseng may induce undesirable thermogenic effects, but not in a type of red ginseng. However, there is a lack of evidence about the correlation between ginsenoside and thermogenesis. Methods: We investigated the effects of PG with different ginsenoside compositions on body temperature, blood pressure, and thermogenesis-related factors in rats. Results: With increasing steaming time (0 h, 3 h, 6 h, and 9 h), the production of protopanaxadiol ginsenosides increased, whereas protopanaxatriol ginsenosides decreased in white ginseng. In both short- and long-term studies, administration of four ginseng extracts prepared at different steaming times did not induce significant changes in body temperature (skin, tail, and rectum) and blood pressure of rats compared to saline control. In addition, there were no significant differences in the molecular markers related to thermogenesis (p > 0.05), mRNA expressions of peroxisome proliferator-activated receptor-gamma coactivator-$1{\alpha}$ and uncoupling protein 1 in brown adipose tissue, as well as the serum levels of interleukin-6, inducible nitric oxide synthase, and nitrite among the treatment groups. Conclusion: These observations indicate that the potential undesirable effects of PG on body temperature could not be explained by the difference in ginsenoside composition.

Echinacoside Induces UCP1- and ATP-Dependent Thermogenesis in Beige Adipocytes via the Activation of Dopaminergic Receptors

  • Kiros Haddish;Jong Won Yun
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1268-1280
    • /
    • 2023
  • Echinacoside (ECH) is a naturally occurring phenylethanoid glycoside, isolated from Echinacea angustifolia, and this study aimed to analyze its effect on thermogenesis and its interaction with dopaminergic receptors 1 and 5 (DRD1 and DRD5) in 3T3-L1 white adipocytes and mice models. We employed RT-PCR, immunoblot, immunofluorescence, a staining method, and an assay kit to determine its impact. ECH showed a substantial increase in browning signals in vitro and a decrease in adipogenic signals in vivo. Additionally, analysis of the iWAT showed that the key genes involved in beiging, mitochondrial biogenesis, and ATP-dependent thermogenesis were upregulated while adipogenesis and lipogenesis genes were downregulated. OXPHOS complexes, Ca2+ signaling proteins as well as intracellular Ca2+ levelswere also upregulated in 3T3-L1 adipocytes following ECH treatment. This was collectively explained by mechanistic studies which showed that ECH mediated the beiging process via the DRD1/5-cAMP-PKA and subsequent downstream molecules, whereas it co-mediated the α1-AR-signaling thermogenesis via the DRD1/5/SERCA2b/RyR2/CKmt pathway in 3T3-L1 adipocytes. Animal experiments revealed that there was a 12.28% reduction in body weight gain after the ECH treatment for six weeks. The effects of ECH treatment on adipose tissue can offer more insights into the treatment of obesity and metabolic syndrome.

Supplementary prenatal copper increases plasma triiodothyronine and brown adipose tissue uncoupling protein-1 gene expression but depresses thermogenesis in newborn lambs

  • Smith, Stephen B.;Sweatt, Craig R.;Carstens, Gordon E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.506-514
    • /
    • 2020
  • Objective: We tested the hypothesis that increasing dietary copper (Cu) to gravid ewes would enhance brown adipose tissue (BAT) thermogenesis in their offspring. Methods: Twin-bearing ewes were assigned on d 70 of gestation to diets containing 3, 10, or 20 ppm dietary Cu (n = 8 per group). Twin lambs were assigned at birth to a cold (6℃) or warm (28℃) environmental chamber for 48 h. Blood was collected from ewes and from lambs and perirenal BAT was collected after 48 h in the environmental chambers. Results: Prenatal Cu exposure increased ewe plasma triiodothyronine (T3) and thyroxine concentration (T4) (p<0.01) but prenatal Cu exposure had no effect on lamb plasma concentrations of T3, T4, glucose, or nonesterified fatty acid concentration (p≥0.08). The high level of prenatal Cu exposure depressed 48-h rectal temperature (p = 0.03). Cold exposure decreased BAT norepinephrine (NE) and increased BAT dopamine (p≤0.01), but prenatal Cu exposure had no effect on BAT cytochrome C oxidase activity or BAT NE or dopamine (p≥0.07). However, BAT of lambs from high-Cu ewes maintained higher uncoupling protein-1 (UCP1) gene expression than BAT of lambs from low- and medium-Cu ewes following warm or cold exposure in environmental chambers (p = 0.02). Cold exposure caused near depletion of BAT lipid by 48 h (p<0.001), increased BAT cytochrome c oxidase activity (p<0.01), and depressed plasma fatty acid concentrations (p<0.001). Conclusion: Although prenatal Cu exposure increased BAT UCP1 expression during warm and cold exposure, prenatal cold Cu exposure depressed 48-h rectal temperature. Cold exposure decreased BAT lipid content by over 80% and decreased lamb plasma fatty acid concentration by over 40%, indicating that fuel reserves for thermogenesis were nearly depleted by 48 h of cold exposure.

Effects of Three Thiazolidinediones on Metabolic Regulation and Cold-Induced Thermogenesis

  • Sohn, Jee Hyung;Kim, Jong In;Jeon, Yong Geun;Park, Jeu;Kim, Jae Bum
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.900-908
    • /
    • 2018
  • Insulin resistance is closely associated with metabolic diseases such as type 2 diabetes, dyslipidemia, hypertension and atherosclerosis. Thiazolidinediones (TZDs) have been developed to ameliorate insulin resistance by activation of peroxisome proliferator-activated receptor (PPAR) ${\gamma}$. Although TZDs are synthetic ligands for $PPAR{\gamma}$, metabolic outcomes of each TZD are different. Moreover, there are lack of head-to-head comparative studies among TZDs in the aspect of metabolic outcomes. In this study, we analyzed the effects of three TZDs, including lobeglitazone (Lobe), rosiglitazone (Rosi), and pioglitazone (Pio) on metabolic and thermogenic regulation. In adipocytes, Lobe more potently stimulated adipogenesis and insulin-dependent glucose uptake than Rosi and Pio. In the presence of pro-inflammatory stimuli, Lobe efficiently suppressed expressions of pro-inflammatory genes in macrophages and adipocytes. In obese and diabetic db/db mice, Lobe effectively promoted insulin-stimulated glucose uptake and suppressed pro-inflammatory responses in epididymal white adipose tissue (EAT), leading to improve glucose intolerance. Compared to other two TZDs, Lobe enhanced beige adipocyte formation and thermogenic gene expression in inguinal white adipose tissue (IAT) of lean mice, which would be attributable to cold-induced thermogenesis. Collectively, these comparison data suggest that Lobe could relieve insulin resistance and enhance thermogenesis at low-concentration conditions where Rosi and Pio are less effective.

The Single-Cell Revelation of Thermogenic Adipose Tissue

  • Qi, Yue;Hui, Xiaoyan Hannah
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.673-684
    • /
    • 2022
  • The past two decades have witnessed an upsurge in the appreciation of adipose tissue (AT) as an immunometabolic hub harbouring heterogeneous cell populations that collectively fine-tune systemic metabolic homeostasis. Technological advancements, especially single-cell transcriptomics, have offered an unprecedented opportunity for dissecting the sophisticated cellular networks and compositional dynamics underpinning AT remodelling. The "re-discovery" of functional brown adipose tissue dissipating heat energy in human adults has aroused tremendous interest in exploiting the mechanisms underpinning the engagement of AT thermogenesis for combating human obesity. In this review, we aim to summarise and evaluate the use of single-cell transcriptomics that contribute to a better appreciation of the cellular plasticity and intercellular crosstalk in thermogenic AT.

Effects of Buja${\cdot}$Padu${\cdot}$Daehwang${\cdot}$Seokgo Extract on UCPs Expression in Mice (부자${\cdot}$파두${\cdot}$대황${\cdot}$석고 추출물의 UCP 발현에 미치는 영향)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Kim, In-Seob;Hwang, Tae-Ok;Lee, Si-Woo;Lee, Su-Kyung;Choi, Jin-Young;Keum, Kyung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1407-1410
    • /
    • 2007
  • We designed to investigate the relationship the cold-hot theory of herbology and body temperature in experimental model. we prepared four kinds of oriental medicine, which consisted of two cold herbs, Daehwang and Seokgo, and two hot herbs, Buja and Padu. Decrease of body temperature by cold exposure for 12 hour was not inhibited by four herbs oral administration for two weeks. Thermogenesis in mammals is an essential physiological function to maintain the body temperature. Mitochondrial uncoupling proteins(UCPs), which have a potential to generate heat by uncoupling oxidative phosphorylation, apper to play a crucial role in thermogenesis. Therefore UCP is commonly recognized as a key molecule in metabolic thermogenesis and its dysfunction contributes to the development of obesity. In these experiments, Daehwang water extracts inhibited the UCP1 mRNA expression increase by cold exposure in brown adipose tissue. But other herbs did not significantly influence on UCPs mRNA expression in white adipose tissue and seleus muscle tissue. Based on this experiment, we will try to clarify the effects of Daehwang water extracts on UCP1 expression and function.

Prediction of non-exercise activity thermogenesis (NEAT) using multiple linear regression in healthy Korean adults: a preliminary study

  • Jung, Won-Sang;Park, Hun-Young;Kim, Sung-Woo;Kim, Jisu;Hwang, Hyejung;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2021
  • [Purpose] This preliminary study aimed to develop a regression model to estimate the non-exercise activity thermogenesis (NEAT) of Korean adults using various easy-to-measure dependent variables. [Methods] NEAT was measured in 71 healthy adults (male n = 29; female n = 42). Statistical analysis was performed to develop a NEAT estimation regression model using the stepwise regression method. [Results] We confirmed that ageA, weightB, heart rate (HR)_averageC, weight × HR_averageD, weight × HR_sumE, systolic blood pressure (SBP) × HR_restF, fat mass ÷ height2G, gender × HR_averageH, and gender × weight × HR_sumI were important variables in various NEAT activity regression models. There was no significant difference between the measured NEAT values obtained using a metabolic gas analyzer and the predicted NEAT. [Conclusion] This preliminary study developed a regression model to estimate the NEAT in healthy Korean adults. The regression model was as follows: sitting = 1.431 - 0.013 × (A) + 0.00014 × (D) - 0.00005 × (F) + 0.006 × (H); leg jiggling = 1.102 - 0.011 × (A) + 0.013 × (B) + 0.005 × (H); standing = 1.713 - 0.013 × (A) + 0.0000017 × (I); 4.5 km/h walking = 0.864 + 0.035 × (B) + 0.0000041 × (E); 6.0 km/h walking = 4.029 - 0.024 × (C) + 0.00071 × (D); climbing up 1 stair = 1.308 - 0.016 × (A) + 0.00035 × (D) - 0.000085 × (F) - 0.098 × (G); and climbing up 2 stairs = 1.442 - 0.023 × (A) - 0.000093 × (F) - 0.121 × (G) + 0.0000624 × (E).