• 제목/요약/키워드: thioacetamide

검색결과 79건 처리시간 0.03초

Thioacetamide 유발 흰 쥐 간독성에 대한 인삼 사포닌 및 에타놀 추출물의 효과 (Effects of Saponin and Ethanol Extract of Panax Ginseng against Thioacetamide - Induced Hepatotoxicity in Rats)

  • 김혜영;최홍순;김경환
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.251-258
    • /
    • 1996
  • Panax ginseng has been used for various diseases including hepatic disorders. The aim of the present study was to investigate the hepatoprotective effects of ethanol extract and saponin of Panax ginseng in thioacetamide-intoxicated rats and to compare with silymarin, a known hepatoprotective agent. Male Sprague-Dawley rats were given single intragastric administration of thioacetamide. Aqueous solutions of ethanol extract and saponin of Panax ginseng with or without silymarin were administered intragastrically daily for six days from four days before until one day after thioacetamide administration. At the end of the treatment, the rats were fasted overnight and sacrificed. As a result, thioacetamide caused significant increase in serum levels of AST, ALT, 5'-nucleotidase and bilirubin. Thioacetamide increased $Ca^++$ content but decreased protein content in liver tissue. These thioacetamide-induced biochemical changes were prevented both by ethanol extract of ginseng and silymarin, but not by ginseng saponin. Silymarin did not potentlate the effect of either ethanol extract or saponin of ginseng on these parameters. Thioacetamide-induced confluent necrosis was not protected by the test drugs. In conclusion, ethanol extract of ginseng protects the liver possibly by stabilizing the cell membrane and by inhibiting thioacetamide-induced $Ca^++$ increase in the hepatocytes, which was comparable to that of silymarin.

  • PDF

Thioacetamide처리한 백서간세포의 in vitro 상에서의 재분열 (In Vitro Regeneration of Carcinogen Thioacetamide Treated Rat Hepatocytes)

  • 유소영;김규원;이혜정;최용천
    • 대한약리학회지
    • /
    • 제32권3호
    • /
    • pp.399-406
    • /
    • 1996
  • Thioacetamide는 non-genotoxic 발암제로서 세포단백의 변형을 초래하는 것으로 알려져 있으며 이것을 단기간 처리하면 핵소체의 비대를 초래하게 된다. 본 연구에서는 thioacetamide를 처리한 간세포를 in vivo와 in vitro 상태에서 관찰하였다. In vivo상태로서 thioacetamide를 쥐의 복강에 7일간 주사하면 (50mg/kg), 핵소체 비대와 B23 및 MAP kinase와 같은 신호전달분자들이 증가하는 것을 관찰할 수 있었다. In vitro 상태로서 쥐의 간장을 collagenase로 분리하여 유전자 치료에 사용될 수 있는 배양조건으로 간세포를 배양하여 핵소체를 관찰한 결과 핵소체 비대가 현저하였으며, B23의 양도 증가하였다. 본 실험의 결과로 미루어 볼 때, 간세포는 핵소체 비대 수용능력이 약 100배 이상이라고 할 수 있으며, thioacetamide 처리에 의하여 라이보좀 생성과 핵소체 증가 능력이 증폭되어 나타나는 것으로 사료된다.

  • PDF

흰쥐의 Thioacetamide에 의한 간장해에 미치는 Silymarin 과 염산 Promethazine의 약물 상호작용에 관한 연구 (Studies on the Drug Interaction of Silymarin with Promethazine Hydrochloride in Thioacetamide Hepatotoxicity of Rats)

  • 조윤희
    • 약학회지
    • /
    • 제23권1호
    • /
    • pp.41-49
    • /
    • 1979
  • By intraperitoneal administration of thioacetamide to rats, acute liver injury was produced. In these rats, the level of serum GOT and GPT activities showed a remarkable increase and the principal histopathologic change was centrilobular hepatic necrosis. In this study, combined administration of silymarin with promethazine hydrochloride to the rats with acute liver injury which was produced by thioacetamide inhibited the increase of serum transaminase activities and protected the histopathologic change, showing comparatively more improved results than simple administration of silymarin alone. On the basis of these results, it is suggested that promethazine hydrochloride potentiates the effectiveness of silymarin in acute thioacetamide hepatotoxicity of rats.

  • PDF

ROLE OF METABOLISM BY FLAVIN-CONTAINING MONOOXYGENASE IN THIOACETAMIDE-INDUCED IMMUNOSUPPRESSION

  • Woo S. Koh;Lee, Jeong W.;Tae C. Jeong
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Current Trends in Toxicological Sciences
    • /
    • pp.73-73
    • /
    • 2002
  • Thioacetamide has been known to cause immune suppression. The object of the present study is to investigate the role of metabolic activation by flavin- containing monooxygenases (FMO) in thioacetamide-induced immune response. To determine whether the metabolites of thioacetamide produced by FMO causes the immunosuppression, methimazole (MMI), an FMO inhibitor, was used to block the FMO pathway.(omitted)

  • PDF

Protective Effects of Diallyl Sulfide against Thioacetamide-Induced Toxicity: A Possible Role of Cytochrome P450 2E1

  • Kim, Nam Hee;Lee, Sangkyu;Kang, Mi Jeong;Jeong, Hye Gwang;Kang, Wonku;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.149-154
    • /
    • 2014
  • Effects of diallyl sulfide (DAS) on thioacetamide-induced hepatotoxicity and immunotoxicity were investigated. When male Sprague-Dawley rats were treated orally with 100, 200 and 400 mg/kg of DAS in corn oil for three consecutive days, the activity of cytochrome P450 (CYP) 2E1-selective p-nitrophenol hydroxylase was dose-dependently suppressed. In addition, the activities of CYP 2B-selective benzyloxyresorufin O-debenzylase and pentoxyresorufin O-depentylase were significantly induced by the treatment with DAS. Western immunoblotting analyses also indicated the suppression of CYP 2E1 protein and/or the induction of CYP 2B protein by DAS. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 400 mg/kg of DAS for 3 days, followed by a single intraperitoneal treatment with 100 and 200 mg/kg of thioacetamide in saline for 24 hr. The activities of serum alanine aminotransferase and aspartate aminotransferase significantly elevated by thioacetamide were protected in DAS-pretreated animals. Likewise, the suppressed antibody response to sheep erythrocytes by thioacetamide was protected by DAS pretreatment in female BALB/c mice. Taken together, our present results indicated that thioacetamide might be activated to its toxic metabolite(s) by CYP 2E1, not by CYP 2B, in rats and mice.

인진청간탕 및 와송 어성초 가미방의 간섬유화억제에 미치는 효과 (Effect of Yinjinchunggan-tang based Herb Formulae Containing Wasong and Eosungcho on Fibrogenesis)

  • 문영훈;우홍정
    • 대한한방내과학회지
    • /
    • 제32권2호
    • /
    • pp.153-169
    • /
    • 2011
  • Objectives : This study was performed to investigate the anti-fibrogenic effect and the effect on cell growth and apoptosis in YJCGT, YJCGT YSO and YJCGT YSCO on thioacetamide-induced rat liver tissue and the immortalized human hepatic cell line LX2. Materials and Methods : LX2 cells were treated with various concentrations (0, 50, 150, 300 ug/ml) of YJCGT, Y+YSO, and Y+YSCO extract for 24, 48 and 72 hours. After the treatment, cell viability was measured by using MTT assay. Caspase inhibitor assay, and cell viability were determined by a colorimetric assay with PMS/MTS solution. Rat liver fibrosis was induced by intraperitoneal thioacetamide injection 150 mg/kg 3 times a week for 5 weeks. After the treatment, body weight, liver & spleen weights, liver function test, the complete blood cell count and the change of portal pressure were studied. After YJCGT, Y+YSO, and Y+YSCO treatment, percentages of collagen in thioacetamide-induced rat liver tissue were measured. Results : The viability of the LX2 cell decreased in a dose- and time-dependent manner. Exposure of LX2 cells to YJCGT, YJCGT+YSO and YJCGT+YSCO induced caspase-3 activation, but co-treatment of YJCGT, YJCGT+YSO and YJCGT+YSCO with the pan-caspase inhibitor Z-VAD-FMK, and the caspase-3 inhibitor Z-DEVE-FMK, blocked apoptosis. There was no difference in rat body weight between the thioacetamide only group and the YJCGT, YJCGT+YSO and YJCGT+YSCO groups. In the YJCGT, YJCGT YSO and YJCGT YSCO groups, the serum level of GPT significantly went down compared with the thioacetamide only group. In the YJCGT, Y+YSO, Y+YSCO groups, white blood cell elevated by thioacetamide injection decreased but RBC, Hgb, and Hct increased. In the Y+YSO group, the portal pressure elevated by thioacetamide injection significantly decreased. In the histological finding, thioacetamide injections caused severe fibrosis, but YJCGT, Y+YSO, and Y+YSCO treatment significantly reduced the amounts of hepatic collagens. Conclusions : YJCGT, Y+YSO, and Y+YSCO inhibit the growth of LX2 cells by inducing apoptosis through caspase activity. YJCGT, Y+YSO, and Y+YSCO have beneficial effects on the treatment of cirrhotic patients as well as patients with chronic hepatitis.

Ursodeoxycholic acid가 급성 간손상에 미치는 영향 (Effects of Ursodeoxycholic Acid on Acute Hepatic Lesion)

  • 김강석
    • 한국식품위생안전성학회지
    • /
    • 제9권2호
    • /
    • pp.75-80
    • /
    • 1994
  • The effects of ursodeoxycholic acid (UDCA) were studied on the hepatotoxicity induced by several hepatotoxicants such as carbonte trachloride, thioacetamide and 1-naphthylisothiocyanate in ICR male mice. UDCA (50 mg/kg, 100 mg/kg) decreased the elevated serum bilirubin in carbon tetrachloride intoxicated mice, the elevated serum AST, alkaline phosphatase in thioacetamide intoxicated mice, the elevated serum AST and bilirubin in 1-naphthylisothiocyanate intoxicated mice.

  • PDF

Role of metabolism by flavin-containing monooxygenase in thioacetamide-induced immunosuppression

  • Lee, Jeong W.;Ki D. Shin;Shin W. Cha;Kim, Jong-C.;Kim, Eun J.;Sang S. Han;Tae C. Jeong;Woo S. Koh
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.121-121
    • /
    • 2001
  • Thioacetamide has been known to cause immune suppression. In this report we studied the role of metabolic activation by flavin-containing monooxygenase in the thioacetamide-induced immune response. To determine whether the metabolites of thioacetamide produced by flavin-containing monooxygenase result in the immunosuppression, methimazole, a flavin-containing monooxygenase inhibitor, was used to block the flavin-containing monooxygenase pathway.(omitted)

  • PDF

Pretreatment with 1,8-Cineole Potentiates Thioacetamide-Induced Hepatotoxicity and Immunosuppression

  • Kim, Nam-Hee;Hyun, Sun-Hee;Jin, Chun-Hua;Lee, Sang-Kyu;Lee, Dong-Wook;Jeon, Tae-Won;Lee, Jae-Sung;Chun, Young-Jin;Lee, Eung-Seok;Jeong, Tae-Cheon
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.781-789
    • /
    • 2004
  • The effect of 1,8-cineole on cytochrome P450 (CYP) expression was investigated in male Sprague Dawley rats and female BALB/c mice. When rats were treated orally with 200, 400 and 800 mg/kg of 1,8-cineole for 3 consecutive days, the liver microsomal activities of benzy-loxyresorufin- and pentoxyresorufin-D-dealkylases and erythromycin N-demethylase were dose-dependently induced. The Western immunoblotting analyses clearly indicated the induction of CYP 2B1/2 and CYP 3A1/2 proteins by 1,8-cineole. At the doses employed, 1,8-cineole did not cause toxicity, including hepatotoxicity. Subsequently, 1,8-cineole was applied to study the role of metabolic activation in thioacetamide-induced hepatotoxicity and/or immunotoxicity in animal models. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 800 mg/kg of 1,8-cineole for 3 days, followed by a single intraperitoneal treatment with 50 and 100 mg/kg of thioacetamide in saline. 24 h later, thioacetamide-induced hepatotoxicity was significantly potentiated by the pretreatment with 1,8-cineole. When female BALB/c mice were pretreated with 800 mg/kg of 1,8-cineole for 3 days, followed by a single intraperitoneal treatment with 100 mg/kg of thioace-tamide, the antibody response to sheep red blood cells was significantly potentiated. In addition, the liver microsomal activities of CYP 2B enzymes were significantly induced by 1,8-cineole as in rats. Taken together, our results indicated that 1,8-cineole might be a useful CYP modulator in investigating the possible role of metabolic activation in chemical-induced hepato-toxicity and immunotoxicity.