• Title/Summary/Keyword: thylakoid

Search Result 92, Processing Time 0.019 seconds

Lipid Peroxidation of Ginseng Thylakoid Membrane (인삼 틸라코이드 막의 지질과 산화)

  • 양덕조
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.135-141
    • /
    • 1990
  • In order to elucidate the mechanism of the leaf-burning disease of ginseng (Panax ginseng C.A. Meyer), the relationships between thylakoid membrane peroxidation and chlorophyll bleaching were investigated in comparison with the ones of soybean (Glycine max L). When I measured the rate of lipid peroxidation in the thylakoids of ginseng and soybean by irradiation of light(60 w.m-2), it was identified that, the remarkably lower rate of lipid peroxidation was found in the ginseng thylakoid than the case of soybean. When lipid peroxidation of ginseng thylakoid was induced in the dark, chlorophyll contents of thylakoid was not changed. The results suggest that lipid peroxidation does not affect the chlorophyll bleaching in ginseng thylakoid. Thylakoid membrane peroxidation as well as chlorophyll bleaching was closely related with photosynthetic electron transport. But, according to the quenching experiment active oxygen species induced lipid peroxidation may be different species in the case of chlorophyll bleaching.

  • PDF

Structural Characterization of Hordeum vulgare L. Chloroplast by Ozone

  • Chung, Hwa-Sook;Lim, Young-Jin;Park, Kang-Eun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.85-94
    • /
    • 2000
  • The effects of ozone on chloroplast development in barley seedlings during greening was investigated based on ultrastructural changes in the chloroplasts and band pattern changes in the chloroplast thylakoid membrane proteins. In this analysis of the chloroplast thylakoid membrane thylakoid protein band pattern by SDS-PAGE, none of the 24-hour greening bands included were clearer than the control. This means that the ozone treatment produced a dealy in chloroplast development and decreased the amount of thylakoid membrane proteins. LHC II chloroplast band of developing barley seedlings treated with 0.5 and 1.0 ppm ozone during the last 4 hours of the 24-hour greening period was weaker than the other bands. This result indicates that ozone affects the LHC II protein complex of the chloroplast thylakoid membrane. When investigating the ultastructural changes in ozone-treated chloroplast, the main site affected by 0.5 ppm ozone was the chloroplast grana, thereby explaining the delayed chloroplast development during the early phase of greening. In addition, there was also a structural change in the stromal grana of the ozone treated chloroplast during the middle phase of greening. The effects of ozone on the chloroplast of barley seedlings during the last phase of 48-hour greening were more functionally inhibiting than structural changes.

  • PDF

Analysis of Pigments and Thylakoid Membrane Proteins in Photosystem I - Mutants from Synechocystis sp. PCC6803 (Synechocystis sp. PCC6803을 이용한 Photosystem I- mutants의 색소 및 틸라코이드막 단백질 분석)

  • 전은경;장남기
    • Asian Journal of Turfgrass Science
    • /
    • v.11 no.1
    • /
    • pp.45-58
    • /
    • 1997
  • Pigments and thylakoid membrane proteins were investigated in wild type and PS I- mutants from Synechocystis sp. PCC6803 Comparing morphological features, B2 was less fluorescent than the other strains. The contents of chlorophyll a were propotional to the FNR activity in thylakoid membrane. The FNR activity of mutants was lower than that of wild type. In the result of pigments analysis, mutants had smaller cholophyll a than that of wild type. The major carotenoid was found to he $\beta$-caroene, but aeaxanthin was barely detected in thylakoid membrane of mutants. The polypeptide, 14.8kD was detected by electrophoresis in mutants. It was considered to be the modification of 15.4kD in wild type. Membrane polypeptides of 17.6 and 19.7kD were not detected in mutants. In the result of western blotting, subunit I was detected in all strains, but subunit II was barely detected in mutants. Subunit II was not detected in B2 at all. In view of the results so far achieved, the changes of contents of chlorophyll and zeaxanthin were affected by the defficiency or modification of functional domain in subunit I. Also the modification in subunit I affected the subunit II- binding site in PS I. As the result, efficiency of photosynthesis was decreased. Key words: Synechoystis sp. PCC6803, PS I - mutant, Photosynthetic efficiency, Pigment,Thylakoid membrane proteins, Subunit I, II.

  • PDF

Ultrastructural Investigation on the Formation of Osmiophilic Globules in Ginseng Leaf Chloroplast by High Light

  • Woo Kap Kim
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.275-280
    • /
    • 1995
  • The formation of osmiophilic globules related to the granal lysis has been investigated with a shade plant ginseng (Panax ginseng C. A. Meyer) exposed to full sunlight. The changes of chloroplast were examined as a function of time over 9 days under full sunlight exposure. The ultrastructure of ginseng leaf showed swelling of the granal thylakoid during an early stage of the light exposure. The thylakoid membrane faded and small electron-opaque dots were aggregated on the edges of the granal thylakoid membrane when the exposure time was increased over 1 day. Then, the sahpe of the grana changed into round. After the exposure over 3 days, there appeared many osmiophilic globules with multi-lamellated concentric structure. The globules at this stage were partly accumulated with osmiophilic substances. The outermost membrane of these multi-lamellated osmiophilic globules was attached to the stromal thylakoid membrane connecting to the deforming grana. The osmiophilic globules were elongated after 9 days. In this stage, the multi-lamellated structure was difficult to identify due to severe accumulation of osmiophilic substances. The number of the osmiophilic globules also increased along with the full sunlight exposure time. This observation leads us to believe that the multi-lamellated osmiophilic globules came from the deformation of grana.

  • PDF

Photosynthetic Characteristics of Intact Cells and Thylakoid Membranes of Synechococcus PCC7002 with Polyvinyalcohol-Immobilization (Synechococcus PCC7002의 세포 및 틸라코이드 막의 Polyvinylalcohol 고정화에 의한 광합성 특성)

  • 윤지은;전현식
    • KSBB Journal
    • /
    • v.8 no.2
    • /
    • pp.185-191
    • /
    • 1993
  • Highly stable $O_2$-evolving cells and thylakoid membranes have been obtained from the cyanobacterium, Synechococcus PCC7002, by immobilization with polyvinylalcohol(PVA). The absorption peak showed the blue-shift of about 3 nm after immobilization of intact cells and thylakoid membranes as well as isolation of thylakoid membranes. Photosynthetic electron transport activities, especially PS II activity showed greater stability in the PVA-immobilized cells and thylakoid membranes when stored at $4^{\circ}C$ than in those at $25^{\circ}C$. When the cells were threated at higher temperature, the level of Fo and Fv increased. After imobilization, however, Fo showed no change. This suggests that the immobilization can protect against the damages of PS II complex, especially a water-spiliting system, by heat treatment.

  • PDF

PHOSPHATE-DEFICIENCY REDUCES THE ELECTRON TRANSPORT CAPACITIES OF THYLAKOID MEMBRANES THROUGH LIMITING PHOTOSYSTEM II IN LEAVES OF CHINESE CABBAGE

  • Park, Youn-Il;Hong, Young-Nam
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.95-105
    • /
    • 1994
  • Experiments were carried out to investigate whether P, deficiency in detached 25 mM mannose-feeding led to a decline of the photosynthetic electron transport rates through acidification of the thylakoid lumen. With increasing mannose-feeding time, the maximal CO2 exchange rates and the maximal quantum yields of photosynthesis decreased rapidly up to 6 h by 73% then with little decrease up to 12 h. The ATP/ADP ratio declined by 54% 6 h after the treatment and then recovered to the control level at 12 h. However, the NADPH/NADP~ ratio was not significantly altered by mannose treatment. Electron transport rates of thylakoid membranes isolated from 6 h treated leaves did not change, but they decreased by 30% in 12 h treated leaves. The quenching analysis of Chl fluorescence in mannose-treated leaves revealed that both the fraction of reduced plastoquinone and the degree of acidification of thylakoid lumen remained higher than those of the control. The reduction of PSI in mannose fed leaves was inhibited due to acidification of thylakoid lumen (high qE). The reduction of primary quinone acceptor of PSII was inhibited by mannose feeding. Mannose treatment decreased the efficiency of excitation energy capture by PSII. Fo quenching was induced when treated with mannose more than 6 h, and had a reverse linear correlation with (Fv)m/Fm ratio. These results suggest that Pi deficiency in Chinese cabbage leaves reduce photosynthetic electron transport rates by diminishing both PSII function and electron transfer from PSII to PSI through acidification ofthylakoid lumen, which in turn induce the modification of photosynthetic apparatus probably through protein (de)phosphorylation.

  • PDF

Effects of Light on the Pigment Production and Chloroplast Development of Ginseng Hairy Roots (인삼 모상근의 색소 생성 및 엽록체 발달에 미치는 광의 효과)

  • 양덕조;최혜연
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.28-34
    • /
    • 1997
  • The effects of light on the pigment production and chloroplast development were examined on ginseng hairy roots cultured in 1/2MS liquid medium. The chlorophyll and carotenoid production were increased from 1,000 to 3,500 lux condition, but decreased drastically in 7,000 lux condition. The anthocyanin production was significantly increased with increment light intensity(1,000∼7,000 lux). The thylakoid membrane of chloroplast was proplastid in dark condition and it began to develop into thylakoid membrane in 1,000 lux condition and then intact thylakoid membrane was developed in 3,500 lux condition. However, the development of thylakoid membrane in 7,000 lux condition was inhibited comparing to 3,500 lux condition. The total chlorophyll production in blue light condition were high comparing to other wavelength and same as 40% of total chlorophyll on white light(3,500 lux) condition. The chlorophyll and carotenoid production by sucrose concentration were high in 3% sucrose condition and anthocyanin production was high in 4% condition. The production of chlorophyll and carotenoid by light periods was high when explants were cultured in dark condition for 1 week and then transferred to light condition for 4 weeks. Our results suggest that pigment production and chloroplast development could be accelerated by light Intensity of specific wavelength in cultures of ginseng hairy root.

  • PDF

Changes in Chloroplast Ultrastructure and Thylakoid Membrane Proteins by High Light in Ginseng Leaves

  • Woo Kap Kim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.285-292
    • /
    • 1994
  • Ultrastructural changes in Panax ginseng C. A. Meyer mesophyll chloroplasts and variation of thylakoid membrane protein in responce to the light intensity were studied in leaves of two-y-old plants exposed to two different light intensities under field coditions. The leaves were allowed to function for three months after emergence under two contrasting light conditions. The ginseng chloroplasts of 5% light were filled with highly stacked grana of condensely arrayed thylakoids, so that the stroma space was hardly observed. In contrast, chloroplasts from leaves at 100% sunlight had fewer thylakoid membranes and smaller grana stacks. The number of osmiophilic globules increased. Total Chl content and Chl b content were lower at 100% sunlight than 5% sunlight. The thylakoid membrane proteins in the leaves grown at 100% sunlight showed lower CPIa, LHCII and CP29 than those with 5% sunlight. This effect was most obvious for LHCII. Polypeptides showed major bands at 90, 64, 29-30, 22 and 14 kD, and minor bands at 59, 58, 54, 52, 49, 46, 44, 35, 23, 21 and 18-19 kD. All these bands were lower in intensity in the leaves exposed to 100% sunlight. Moreover, the bands at 58-59, 46-47 and 23 kD disappeared.

  • PDF

Electricity Generation Using Cyanobacteria Synechocystis PCC 6803 in Photosynthetic Bio-Electrochemical Fuel Cell (남조류 Synechocystis PCC 6803을 이용한 생물전기화학적 물분해 전기 생산)

  • Kim, Min-Jin;Oh, You-Kwan;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.6
    • /
    • pp.529-536
    • /
    • 2008
  • Cyanobacteria Synechocystis PCC 6803 or the extracted thylakoid membrane from this strain was appled to photosynthetic bio-electrochemical fuel cell(PBEFC) for the production of hydrogen under the illumination of 48Klux using halogen lamp. PBEFC was composed of anode, cathode and membrane between them. Electrode material was carbon paper while electron mediator and receptor were added phenazine methosulfate(PMS) and potassium ferricyanide respectively. When water and 50 mM tricine buffer and $300{\mu}M$ PMS were added to the anode under the light condition, PBEFC produced the current density $4.4{\times}10^{-5}\;mA/cm^2$, $1.4{\times}10^{-4}\;mA/cm^2$ and $2.4{\times}10^{-4}\;mA/cm^2$, respectively. And the addition of the thylakoid membrane to the system increased current density to $1.3{\times}10^{-3}\;mA/cm^2$. Two times increase of the thylakoid membrane into the anode doubled the current density to $2.6{\times}10^{-3}\;mA/cm^2$. But the current density was not increased proportionally to the amount of thylakoid membrane increased. The system was unstable to measure the electricity output due to the foam production in the anode. Addition of triton X-100 and tween 80 stabilized the system to measure the electricity output but the current density was not increased higher than $8.4{\times}10^{-4}\;mA/cm^2$ and $2.3{\times}10^{-3}\;mA/cm^2$. When the thylakoid membrane was substituted to Synechocystis PCC 6803 cells of four-day culture which has chlorophyll contents $20.5{\mu}g/m{\ell}$, maximum current density was $1.3{\times}10^{-3}\;mA/cm^2$ with $1\;k{\Omega}$ resistance.

The Effect of Growth Regulators and Light Quality on the Changes in Protein Pattern of Callus from Intergeneric Protoplast Fusion between Nicotiana tabacum and Solanum nigrum (Nicotiana tabacum과 Solanum nigrum의 속간 원형질체 융합에서 유도된 캘러스의 단백질 양태변화에 미치는 생장조절제 및 광선의 효과)

  • 김영상;이동희
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.141-155
    • /
    • 1994
  • The effect of growth regulators (NAA, BA and $ extrm{GA}_3$) and light (blue, red and far-red) on the changes in total protein and thylakoid membrane protein pattern of callus from intergeneric protoplast fusion between Nicotiana tabacum and Solanum nigrw were investigated. When the callus were irradiated with different wavelengths of light, blue and red light accelerated the synthesis of total proteins and thylakoid membrane proteins. Particularly, red light led to an increase in the protein synthesis compared to blue light. When the callus were subjected to various combinations of growth regulators, NAA+$ extrm{GA}_3$ and NAA+BA treatments induced remarkable increase of total proteins and thylakoid membrane proteins accumulation, particularly in the combination of NAA+$ extrm{GA}_3$. NAA.$ extrm{GA}_3$ treatment with irradiation of red ligh showed highest value in the accumulation of total proteins and thylakoid membrane proteins. We conclude that simultaneous application of red light and NAA+$ extrm{GA}_3$ treatment may induce synergistic effect in the synthesis of total proteins and thylakoid membrane Proteins.

  • PDF