• Title/Summary/Keyword: thyristor

Search Result 506, Processing Time 0.038 seconds

Power Flow Control of Thyristor Controlled Shunt Compensator (싸이리스터 제어 병렬 보상기에 의한 전력 제어 연구)

  • 정교범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.680-683
    • /
    • 1999
  • A thyristor controlled shunt compensator, which is installed in the middle of the transmission line is adopted for controlling real power flow in a simple power transmission system. By means on the Fourier series representation of the thyristor switching action and the system parameters, the thyristor current equations are derived, which transmit the required real power of the simple power transmission system and inform the thyristor firing angle, the thyristor conduction angle, the power flows and the harmonic characteristics EMTP simulations at the various operating points show the dynamic characteristics of the thyristor controlled shunt compensator and correspond to the results calculated with the Fourier series representation.

  • PDF

Integrated Thyristor Switch Structures for Capacitor Discharge Application

  • Kim, Eun-Dong;Zhang, Chang-Li;Kim, Sang-Cheol;Baek, Do-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.22-25
    • /
    • 2001
  • A thyristor switch circuit for capacitor discharge application, of which the equivalent circuit includes a resistor between cathode and gate of a reverse-conducting thyristor and an avalanche diode anti-parallel between its anode and gate to set thyristor tum-on voltage, is monolithically integrated by planar process with AVE double-implantation method. To ensure a lower breakdown voltage of the avalanche diode for thyristor tum-on than the break-over voltage of the thyristor, $p^+$ wells on thyristor p base layer are made by boron implantation/drive-in for a steeper doping profile with higher concentrations while rest p layers of thyristor and free-wheeling diode parts are formed with Al implantation/drive-in for a doping profile of lower steepness. The free-wheeling diode part is isolated from the thyristor part by formation of separated p-well emitter for suppressing commutation between them, which is achieved during the formation of thyristor p-base layer.

  • PDF

Measuring and Evaluating of Aging of Thyristor for High Capacity Motor Driving (대용량 전동기 구동용 Thyristor 소자의 열화 측정 및 평가)

  • Oh, Dong-Hwan;Lee, J.H.;Lee, S.H.;Kim, K.I.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1957-1960
    • /
    • 1997
  • 일반적으로, Thyristor와 같은 반도체 소자는 수명이 반영구적이라고 알려져 왔으나, 실제로는 사용 시간이 지남에 따라 열화 과정을 가지는 것으로 보고되고 있다. 이는 소자 제조 공정상의 결함이나 가공 불량, 소자 접합면에 존재하는 물리적 불균질성 등이 원인이 되는데 이들 원인으로 인해 반도체 소자내에 취약부위가 존재하게 된다. Thyristor 소자 응용 시스템에 있어서, 운용 중 발생되는 전기적 물리적 스트레스는 Thyristor 소자내의 취약부위에 집중되는데, 시간이 지남에 따라 취약부위가 확산되고 열화가 가속되어 갑작스런 소자 파손으로 이어지게 된다. 본 논문에서는 Thyristor 소자의 열화 과정을 이론적인 측면에서 해석하고, 실제 산업현장에서의 Thyristor 열화 발생 사례를 중심으로 대용량 Thyristor의 열화 평가방법에 대하여 고찰한다.

  • PDF

Study on the analyzing method for examine the thyristor characteristic degradation due to the aging (Thyristor소자의 열화에 따른 특성저하 분석기법에 관한 연구)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ki-Hyun;Lee, Yang-Jae;Choi, Nak-Kwon;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.99-100
    • /
    • 2005
  • Reliability of the thyristor has a major effects on the high power systems such as HVDC, SVC and FACTs, etc. Therefore, analyzing method for thyristor aging is important to improve the stability of thyristor and high power systems. In this paper, we explain the analyzing method for examine the thyristor aging effect. And also, the thyristor aging experiments were performed to investigate the characteristic degradation due to the aging.

  • PDF

A Study on the Characteristics of Thyristor Controlled Shunt Compensator (싸이리스터제어 병렬보상기의 특성 연구)

  • 정교범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.368-376
    • /
    • 1999
  • This paper studies the operational characteristics of thyristor controlled shunt compensator in a simple power t transmission system. With Fourier series representation of the thyristor switching action and the system parameters, t the thyristor current equations are derived, which transmit the required real power of the simple power transmission s system. Bisection algorithm is used to solve the thyristor current equations, which informs the thyristor firing an밍e, t the thyristor conduction an밍e, the power flows and the harmonic characteristics. The stability analysis is performed w with the theory of Poincare mapping for the nonlinear discrete periodic dynamic system. EMTP simulations at the v various operating points show the transient characteristics of the thyristor controlled shunt compensator and C correspond to the results calculated with Fourier series representation and the stability analysis.

  • PDF

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

Computer Simulation for High Voltage Thyristor Fabrication (고전압 사이리스터 제작을 위한 Computer Simulation)

  • Kim, Sang-Cheol;Kim, Eun-dong;Kim, Nam-kyun;Bahng, Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.243-246
    • /
    • 2001
  • Thyristor devices have 3-dimensional complicated structure and were sensitive to temperature characteristics. Therefore, it was difficult to optimize thyristor devices design. We have to consider many design parameter to characterize, and trade-off relations. The important parameters to design thyristor devices are cathode structure, effective line width, cathode-emitter shunt structure, gate structure, doping profile and carrier lifetime. So, we must consider that these design parameters were not acted separately. However, there are many difficulties to determine optimized design parameters by experiment. So, We used specific design software to design thyristor devices, and estimated the thyristor devices characteristics.

  • PDF

Characteristics of Latch-up Current of the Dual Gate Emitter Switched Thyristor (Dual Gate Emitter Switched Thyristor의 Latch-up 전류 특성)

  • 이응래;오정근;이형규;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.799-805
    • /
    • 2004
  • Two dimensional MEDICI simulator is used to study the characteristics of latch-up current of Dual Gate Emitter Switched Thyristor. The simulation is done in terms of the current-voltage characteristics, latch-up current density, ON-voltage drop and electrical property with the variations of p-base impurity concentrations. Compared with the other power devices such as MOS Controlled Cascade Thyristor(MCCT), Conventional Emitter Switched Thyristor(C-EST) and Dual Channel Emitter Switched Thyristor(DC-EST), Dual Gate Emitter Switched Thyristor(DG-EST) shows to have the better electrical characteristics, which is the high latch-up current density and low forward voltage-drop. The proposed DG-EST which has a non-planer p-base structure under the floating $N^+$ emitter indicates to have the better characteristics of latch-up current and breakover voltage.

Design of Characteristics Test Equipment for a Large Capacity Thyristor (대용량 사이리스터 특성평가 장비의 설계 및 제작)

  • Seo Kil-Soo;Kim Hyoung-Woo;Kim Ki-Hyun;Kim Nam-Kun;Kim Eun-Dong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.567-572
    • /
    • 2005
  • Recently, application area of the thyristor is extends to power conversion systems, such as HVDC, BTB, SVC and FACTS. Therefore, reliability diagnostic technique on thyristor is needed to obtain stability and maintenance of power conversion systems. To measure the characteristics of the thyristor, test equipments which based on IEC 747-6 and KS C 7023 standard are needed. In this paper, we presents the design and manufacture of the test equipments for 6.5kV/4.2kA thyristor which used in thyristor valve of HVDC conversion systems by using test standard. Voltage, current, dv/dt and turn-off time test equipments were designed and manufactured. Each systems were made separately, but unity operation can possible.

Design of an Optimum Thyristor Snubber Circuit with Turn-off Model (다이리스터의 Turn-off 모델을 이용한 최적 Snubber 회로 설계)

  • Kim, Kwon-Ho;Moon, Yong-Hyun;Song, Joong-Ho;Chy, Ick;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.773-776
    • /
    • 1993
  • The thyristor turn-off model plays an important part in the design of thyristor snubber circuit. However, it is difficult to determine the thyristor turn-off characteristics. In this paper two methods to establish the simple thyristor turn-off model are proposed based on the reverse recovery characteristics given in the data sheets. Using the simple thyristor turn-off model, the optimum thyristor snubber circuit design procedures are presented considering maximum voltage spike, maximum reverse dv/dt, and turn-off loss.

  • PDF