• Title/Summary/Keyword: time-lapse monitoring

Search Result 38, Processing Time 0.027 seconds

A New Denoising Method for Time-lapse Video using Background Modeling

  • Park, Sanghyun
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.125-138
    • /
    • 2020
  • Due to the development of camera technology, the cost of producing time-lapse video has been reduced, and time-lapse videos are being applied in many fields. Time-lapse video is created using images obtained by shooting for a long time at long intervals. In this paper, we propose a method to improve the quality of time-lapse videos monitoring the changes in plants. Considering the characteristics of time-lapse video, we propose a method of separating the desired and unnecessary objects and removing unnecessary elements. The characteristic of time-lapse videos that we have noticed is that unnecessary elements appear intermittently in the captured images. In the proposed method, noises are removed by applying a codebook background modeling algorithm to use this characteristic. Experimental results show that the proposed method is simple and accurate to find and remove unnecessary elements in time-lapse videos.

A Time-Lapse Microgravity for Grout Monitoring (그라우팅 전후의 시간차 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.101-106
    • /
    • 2007
  • A time-lapse microgravity survey on a newly widen road at Muan, where limestone cavities are developed, for monitoring the change of the subsurface density distribution before and after grouting. Microgravity monitoring is identified as a quick, easy and cost effective. But, it requires strict data acquisition and quality control due to the differences of conditions at measurements. The survey was carried out two times, that is, October 2005 and September 2006. The data were adjusted for reducing the effects due to the different condition of each survey. The processed data acquired in 2005 and 2006 were inverted into the subsurface density distributions. They show the change and development of density structure during the lapsed time, which implies the effects of grouting.

  • PDF

An Introduction to Time-lapse Seismic Reservoir Monitoring (시간경과 탄성파 저류층 모니터링 개론)

  • Nam, Myung-Jin;Kim, Won-Sik
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.203-213
    • /
    • 2011
  • Time-lapse seismic surveys make repeated seismic surveys at different stages of oil production of a hydrocarbon reservoir to monitor changes in reservoir like fluid saturation. Since the repeatable surface seismic measurements can identify fluid types and map fluid saturations, oil and gas companies can make much more informed decision during not only production but also drilling and development. If time-lapse seismic surveys compare 3D seismic surveys, the time-lapse surveys are widely called as 4D seismic. A meaningful time-lapse interpretation is based on the repeatability of seismic surveys, which mainly depends on improved positioning and reduced noise (if surveys were designed properly through a feasibility study). The time-lapse interpretation can help oil and gas companies to maximize oil and gas recovery. This paper discusses about time-lapse seismic surveys mainly focused on feasibility, repeatability, data processing and interpretation.

Time-lapse Resistivity Investigations for Imaging Subsurface Grout during Ground Stabilization

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.241-244
    • /
    • 2007
  • Cement-grouts are injected into limestone cavities beneath the road in the project area, in order to improve strength and reduce permeability; the extent to which grout has penetrated in cavities need to be monitored in order to determined effectiveness of cement-grout. Geophysical approaches, offer great potential for monitoring the grout injection process in a fast and cost-effective way as well as showing whether the grout has successfully achieved the target. This paper presents the ability of surface electrical resistivity to investigate the verification of the grout placement. In order to image the cement-grout, time-lapse surface electrical resistivity surveys were conducted to compare electrical resistivity images before and after injection. Cement-grout was imaged as anomalies exhibiting low resistivity than the surrounding rocks. In accordance with field monitoring, laboratory study was also designed to monitor the resistivity changes of cement-grout specimens with time-lapse. Time-lapse laboratory measurements indicated that electrical methods are good tool to identify the grouted zone. Pre-and post grouting electrical images showed significant changes in subsurface resistivity at grouted zone. The study showed that electrical resistivity imaging technology can be a useful tool for detecting and evaluating changes in subsurface resistivity due to the injection of the grout.

  • PDF

Time-lapse inversion of resistivity tomography monitoring data around a tunnel (터널 주변 전기비저항 토모그래피 모니터링 자료의 시간경과 역산)

  • Cho, In-Ky;Jeong, Jae-Hyeung;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.361-371
    • /
    • 2009
  • Resistivity tomography is very effective geophysical method to find out the resistivity distribution and its change in time around a tunnel. Thus, the resistivity tomogram can provide helpful information which is necessary for the effective maintenance of the tunnel. However, an air filled tunnel severely distorts tomography data, especially when the current or potential electrode is placed near the tunnel. Moreover, the distortion can often lead to misinterpretation of tomography monitoring data. To solve these problem, we developed a resistivity modeling and time-lapse inversion program which include a tunnel. In this study, using the developed program we assured that the inversion including a tunnel gives much more accurate image around a tunnel, compared with the conventional tomogram where the tunnel is not included. We also confirmed that the time-lapse inversion of resistivity monitoring data defines well resistivity changed areas around a tunnel in time.

Time-lapse Inversion of 2D Resistivity Monitoring Data (2차원 전기비저항 모니터링 자료의 시간경과 역산)

  • Kim, Ki-Ju;Cho, In-Ky;Jeoung, Jae-Hyeung
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.326-334
    • /
    • 2008
  • The resistivity method has been used to image the electrical properties of the subsurface. Especially, this method has become suitable for monitoring since data could be rapidly and automatically acquired. In this study, we developed a time-lapse inversion algorithm for the interpretation of resistivity monitoring data. The developed inversion algorithm imposes a big penalty on the model parameter with small change, while a minimal penalty on the model parameter with large change compared to the reference model. Through the numerical experiments, we can ensure that the time-lapse inversion result shows more accurate and focused image where model parameters have changed. Also, applying the timelapse inversion method to the leakage detection of an embankment dam, we can confirm that there are three major leakage zones, but they have not changed over time.

A Constrained Optimum Match-filtering Method for Cross-equalization of Time-lapse Seismic Datasets (시간경과 탄성파 자료의 교차균등화를 위한 제약적 최적 맞춤필터링 방법)

  • Choi, Yun-Gyeong;Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.23-32
    • /
    • 2012
  • The comparison between time-lapse seismic datasets is the most popular method in the reservoir monitoring. The method of extracting the changes only due to the change in the reservoir is the essential technique in the comparison of time-lapse seismic datasets. In the paper, the conventional cross-equalization approaches and an enhanced optimized approach have been tested and compared each other. As conventional approaches, the bandwidth equalization and phase rotation methods have been tested in frequency, time and mixed domains, respectively and their results were compared each other. In order to overcome the limit of the conventional approaches, which loses high frequency components, a new constrained optimum filtering method was proposed and experimented. The new constrained filtering method has shown the improvement in broadening the bandwidth of the components of reservoir changes by acquiring optimized match filter.

Time-lapse Inversion of 3D Resistivity Monitoring Data (3차원 전기비저항 모니터링 자료의 시간경과 역산)

  • Kim, Yeon-Jung;Cho, In-Ky;Yong, Hwan-Ho;Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.217-224
    • /
    • 2013
  • We developed a time-lapse inversion using new cross-model constraints based on change ratio and resolution of model parameters. The cross-model constraint based on change ratio imposes the same penalty on the model parameters with equal change ratio. This constraint can emphasize the model parameters with significant change regardless of their increase or decrease. The resolution cross-model constraint imposes a small penalty on the model parameters with poor resolution, but a large penalty on the model parameters with good resolution. Thus, the model parameter with poor resolution can be effectively identified in the inversion result if they are significantly changed with time. Through the numerical tests for 3D resistivity monitoring data sets, the performance of these two cross-model constraints was confirmed. Finally, for the safety estimation of a sea dyke, we applied the developed time-lapse inversion to the 3D resistivity monitoring data that were acquired at a sea dike located in western coastal area of Korea. The result of time-lapse inversion suggested that there were no significant changes at the sea dike during the monitoring period.

High-Current Time-Lapse Electrical Imaging in Marine Sediments Area (해성퇴적층 하부지반 대전류 time-lapse 전기탐사)

  • Jung, Hyun-Key;Geo, Dong-Kweon Lee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.109-112
    • /
    • 2006
  • Successful field test results for high-current time-lapse electrical imaging in marine sediments area are discussed. Because field trial by commercially available equipments were failed, self-developed system which supports transmitting current up to 5 ampere was used. Some weak zones due to local fractures were detected, but the weak zone effect in this area by time-lapse measurements from sea level change was minor.

  • PDF

Application of Inversion Methods to Evaluate the State of Soft Soil using Electrical Resistivity Monitoring Data (전기비저항 모니터링 자료를 이용한 연약지반 평가를 위한 역산기법 적용 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.104-113
    • /
    • 2014
  • Electric resistivity monitoring was applied to evaluate the soft ground in reclaimed land in order to figure out the applicability of physical prospecting. For this, electrical resistivity monitoring data were acquired for total three months and analyzed those data with independent inversion, time-lapse inversion, and 4D inversion methods. The result was compared for various inversion methods so as to figure out what showed the soft soil most properly. Moreover, drilling and CPT(Cone Penetration Test) data were also used in order to find out if each of those inversion methods could distinguish either bed rock or the soft soil clearly. And according to the result, time-lapse inversion showed less inversion artifacts than independent inversion, so it could indicate the soft soil better. If data gained for a longer period than three months are used, 4D inversion has been found to be a more efficient analysis method than the time-lapse inversion method. Electrical resistivity monitoring on the soft soil has been found to be a useful method that can analyze the spatio-temporal electric state of the ground serially.