• Title/Summary/Keyword: tire manufacturing

Search Result 89, Processing Time 0.036 seconds

Tire Industry and Its Manufacturing Configuration

  • Lee, Young-Sik;Cpim;Lee, Jin-Kyu
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.135-138
    • /
    • 2000
  • This paper is intended to propose what manufacturing configuration (manufacturing planning and shop floor control) is suitable for the tire industry. Basically tire-manufacturing process is mixed-products, parallel-disconnected-flow-shop. Both throughput time and cycle tine are very short, the variety of tires is very high, the setup time is long, shop floor data reporting requirements is high, and there are many equipments and people working. And with no exception, tire industry also now confronts increasing requirements of delivery conformance with the above peculiar characteristics of tire manufacturing and changing market environments, this paper suggests, weekly master scheduling with no MRP is desirable and traditional kanban is right selection for shop floor control/scheduling. This paper describes why this configuration should be, using the manufacturing engineering principles and some new insights like four primitives of parallel flow shop. Generally known that shop with high parallel-product-mix and long setup time isn't good candidate for kanban. The four primitives of parallel flow shop explain why kanban is also useful scheduling technique in that environment.

  • PDF

Stress Analysis of Automotive Tire at Contact on Road Surface (노면에 접촉된 자동차 타이어의 응력 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.40-45
    • /
    • 2009
  • This study is analyzed by stress contour of automotive tire at contact on road surface. Maximum equivalent stress as 61200Pa is shown on the lower mid part in case of tire contacted on road surface. As the air pressure of tire increases, maximum total deformation as 5mm is shown on the side part of tire. It can be shown that the side part of tire is unstabilized. There is no load effect on tire at its upper and lower directions. When the moment applied on the side of tire is increased 1.4 times as its value, the value of maximum principal stress is increased 1.4 times. The stress at the tire is in proportion to the moment applied on the its side. The tire tends to incline toward its side by this moment.

  • PDF

The automatic tire classfying vision system for real time processing (실시간 처리를 위한 타이어 자동 선별 비젼 시스템)

  • 박귀태;김진헌;정순원;송승철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.358-363
    • /
    • 1992
  • The tire manufacturing process demands classification of tire types when the tires are transferred between the inner processes. Though most processes are being well automated, the classification relies greatly upon the visual inspection of humen. This has been an obstacle to the factory automation of tire manufacturing companies. This paper proposes an effective vision systems which can be usefully applied to the tire classification process in real time. The system adopts a parallel architecture using multiple transputers and contains the algorithms of preprocesssing for character recognition. The system can be easily expandable to manipulate the large data that can be processed seperately.

  • PDF

Vibration Characteristics of Tires for Light-duty Truck under Free Suspension (자유상태에서 경상용차용 타이어의 진동특성)

  • 김용우;최동수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.49-56
    • /
    • 2000
  • Due to the rapid increase of long-distance transportation, particular attentions have been paid to truck tires, especially to their dynamic characteristics. In this research, experimental modal analysis on two kinds of light-duty truck tires, i.e., radial tire and bias tire, are performed by using GRFP(global rational fraction polynomial) method to investigate differences of the dynamic behavior of the two tires. The test results have shown that the modal frequencies of bias tire are much higher than the corresponding values of radial tire with a similar mode shape, which is in accordance with the fact that the radial rigidity of bias tire is higher than that of radial tire. And most of the modal decay rates of bias tire are larger than those of radial tire within the scope of this experiment. In the frequency domain range of test, the bias tire has extra modes, which do not occur in the radial tire. This difference is based on the fact that the circumferential rigidity of the bias tire is quire low whereas that of radial tire is so high that the frequencies of the corresponding modes are out of the frequency range of test.

  • PDF

System Development for Road Noise Prediction of Automobile Tire (자동차 타이어 도로소음 예측 시스템 개발)

  • 김병삼
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.81-90
    • /
    • 1998
  • Noise produced by surface transportation vehicles affects our daily lives, penetrating wherver man lives or works. In this paper, a theoretical model has been studied to describe the sound radiation by the surface vibration of in-service tires and studied about an experiment on sound radiation characteristic due to tire vibration. When a tire is analyzed, it has been modeled as a curved beams with distributed sprongs and dash-pots which represent the radial, tangential stiffnes and damping of tire, respectively. The experimental investigation for the sound radiation of a radial tire has been made. Based on the sound intensity and STSF(Spatial Transformation of Sound Field) techniques. the sound pressure and the sound radiation are measured. The comparison of numerically analyzed results with experimental results was made seperately for the tire in rotation. As a result of this study, a program for the prediction of the tire vibration sound radiation was intended to by developed which enables a designer of a tire to foresee the influence of the various design factors on the tire vibration sound radiation.

  • PDF

Application of Spring Vent System for the Manufacturing of Solid Tire (솔리드 타이어 제조를 위한 스프링 벤트 시스템의 적용)

  • Son, Jong Nam;Jeong, Young Cheol;Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.8
    • /
    • pp.659-663
    • /
    • 2014
  • Manufacturing processes of industrial tire are composed of mixing, extrusion, curing, trimming and inspecting. Among them curing is the most important process in the production of industrial tire. In this study the newly developed spring vent system was designed in order to solve rubber intrusion problem inside spring vent system in the curing process. After the experiment it is concluded that rubber intrusion was caused by angled stem head part. New spring vent system was manufactured and new design of spring vent system is proper to use for industrial tire curing process.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

A Simulation Model for Supporting System Design of Tire Manufacturing Cell (타이어 제조셀 시스템설계 지원을 위한 시뮬레이션 모델)

  • 문덕희;장구길
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.27-38
    • /
    • 2000
  • For developing a new Tire Manufacturing Cell, the cooperation between the designer of facilities and the designer of system is very important. The purpose of this paper is to develop a simulation model that can be applied to the system design of Tire Manufacturing Cell. The mechanic characteristics of new facilities are obtained from facility design team and the simulation model is developed with SIMPLE++ using those input data. A model for estimating the number of tire drum required is also suggested and it is verified with numerical examples. The results of simulations can be fed back to the facility design team and used for modifying the structure of the facilities.

  • PDF

Performance Prediction of Vibration Energy Harvester considering the Dynamic Characteristics of Rotating Tires (회전하는 타이어의 동특성을 고려한 진동에너지 하베스터 성능 예측)

  • Na, Hae-Joong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.87-97
    • /
    • 2020
  • In general, tires require various sensors and power supply devices, such as batteries, to obtain information such as pressure, temperature, acceleration, and the friction coefficient between the tire and the road in real time. However, these sensors have a size limitation because they are mounted on a tire, and their batteries have limited usability due to short replacement cycles, leading to additional replacement costs. Therefore, vibration energy harvesting technology, which converts the dynamic strain energy generated from the tire into electrical energy and then stores the energy in a power supply, is advantageous. In this study, the output voltage and power generated from piezoelectric elements are predicted through finite element analysis under static state and transient state conditions, taking into account the dynamic characteristics of tires. First, the tire and piezoelectric elements are created as a finite element model and then the natural frequency and mode shapes are identified through modal analysis. Next, in the static state, with the piezoelectric element attached to the inside of the tire, the voltage distribution at the contact surface between the tire and the road is examined. Lastly, in the transient state, with the tire rotating at the speeds of 30 km/h and 50 km/h, the output voltage and power characteristics of the piezoelectric elements attached to four locations inside the tire are evaluated.

The Effectiveness of Participatory Ergonomics Programs for Prevention of Musculoskeletal Disorders in the Tire Manufacturing Company (타이어 제조회사에서의 참여적 근골격계질환 예방관리프로그램 적용효과)

  • Lee, Yun-Keun;Han, In-Im
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.51-63
    • /
    • 2009
  • In the field of ergonomics, it is evident that participatory action research methodology could contribute to reduce risk factors of work related musculoskeletal disorders(WMSDs). The objective of this study was to evaluate the effectiveness of a participatory ergonomics in reducing the incidence rate and severity of WMSDs in the tire manufacturing company. In this study, an action committee comprising 13 members was organized in the tire manufacturing company. The action group participated at every research process, education and training, assessment and intervention of risk factors, and early detection and management of WMSDs during the 3 years(2004-2006). The prevention programs contributed to an overall reduction in incidence rate by approximately 37.2%, and lost workdays and workers' compensation costs by approximately 55.1%. But, the incidence rate increased 29.0%, and compensation costs increased 59.0% in the first-year setting programs, and both the incidence rate and compensation costs decreased after the second-year managing programs. And, the reduction rates(63.2%) of insurance cases is higher than that(9.7%) of non-insurance cases. The results showed that participatory ergonomics programs may be effective in reducing the incidence and severity rate of WMSDs.