• Title/Summary/Keyword: topside structure

Search Result 38, Processing Time 0.02 seconds

A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching (진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구)

  • Lee, Dong-Ju;Shin, Sang-Beom
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

A Study on the Effect of Topside and Interface on Hull in Whole Ship Analysis of Ship Type Offshore Structure (Ship Type 해양 구조물 전선 해석 시 Topside와 Interface가 Hull에 미치는 영향 연구)

  • Seo, Joon-Gyu;Kang, Ho-Yun;Park, Jung-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.314-321
    • /
    • 2021
  • In the existing whole ship analysis, topside was modeled as mass element. However recently, the topside is modeled as beam element due to the owner's requirement to improve the maturity of the whole ship FE model. To follow the owner'srequirement, detailed information for topside drawing and modeling, which may delay analysis schedule, is needed. However, it is hard to respond effectively to this matter due to the lack of study on the topside from the hull perspective. Therefore in this study, the effect of the topside on the hull is investigated when the topside is modeled as a mass element or beam element respectively. In addition, the interface modeling method is analyzed to verify modeling method used in the existing whole ship analysis. The results indicate that the interface and topside modeling method used in existing whole ship analysis are appropriate. This conclusion will be the technical basis for responding to owner's requirement about the topside modeling method.

A Study of the Design for the Topside Module Support Structure of an Offshore Floater (해양 플로터 상부모듈 지지구조의 설계에 관한 연구)

  • Song, Myung-Keun;Jang, Beom-Seon;Ko, Dae-Eun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.53-58
    • /
    • 2010
  • Offshore floater such as FPSO, drillship is composed of topside and hull side, and the interface structure is called topside module support. In this study, practical considerations were investigated for the design of topside module supports, from the concept design stage to the final stage of structural determination, in view of design efficiency and construction productivity. The effects of welding design factors of topside module support, such as welding throat thickness, sectional welding area, and welding man-hours, were compared and analyzed closely with respect to productivity. The current status and problems regarding the application of deep or full penetration welding are discussed, and a direct-calculation method is suggested as a possible solution to these problems.

A Study on the Structural Behavior of FPSO Topside Module by Support Condition (지지조건에 따른 FPSO 상부 모듈의 구조적 거동에 관한 연구)

  • Jang, Beom-Seon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.18-23
    • /
    • 2018
  • FPSO consists of topside modularized plants for production of crude oil, and hullside structures that serve as support for the topside and storage of produced crude oil. The structural behavior of the FPSO topside module and its supporting hull depends on the interface structure that connects them, and the interface structure consists of a combination of individual unit support structures called Module Support Seat (MSS). Types of interface structures are various and, accordingly, the basic design of the FPSO topside module structure is greatly influenced, so various design methods should be considered from the initial design phase. Structural design of FPSO topside module requires consideration of the number of MSSs, connection type, and structural analysis options such as the range of finite element models, load conditions, and boundary conditions for verification of structural strength. In this study, the comparison combination cases for the above considerations were derived and the strength evaluation was performed, and the structural behavior characteristics of the topside module were compared and analyzed through a detailed review of the analysis results. The results of this study are considered to be a good reference for designing a more reliable topside module structure.

Evaluation of Mating Dynamic Forces of Semi-submersible Offshore Structure Topside Module (반잠수식 해양 구조물 상부 모듈의 해상 결합 작업시 동하중 평가)

  • Lee, Jin-Ho;Jung, Hyun-Soo;Kim, Byung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This paper calculates the mating dynamic forces of a semi-submersible offshore structure's topside module, where a hull moored in the sea is combined with a topside module carried by a heavy lift vessel, as a mating installation method. The environmental conditions include various wave directions and wave heights, with constant wind and current speeds. Appropriate ballast and de-ballast plans for the heavy lift vessel and hull of the semi-rig should be performed in order to safely obtain these forces, whereas a fixed platform or the GBS (Gravity based structure) type of offshore structure only needs a ballast plan for the heavy lift vessel. From this paper, the allowable wave height or wave direction for the mating procedure can be investigated based on the standard DAF (Dynamic amplitude factor) of the rules and regulations.

A Noise Characteristics and Countermeasures of FPSO Topside (FPSO Topside의 소음특성 파악 및 저감대책)

  • Kim, Dong-Hae;Kim, Sung-Hoon;Chung, Kun-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.73-76
    • /
    • 2005
  • Recently, the demand for the Floating, Production, Storage, and Offloading facility (FPSO) which has some economic and technical advantages, has increased in offshore oil production areas. FPSO vessel dose not have self-propulsion system, but has additional facilities for oil production and positioning system. Main noise sources such as gas turbines, compressors, and pumps, are located on top of the hull (Topside area). In general, the noise regulation for the offshore structure is severer than that of the cargo ship and acceptable noise limit of cabin is specified as 45 dB(A). This paper describes the noise characteristics and the countermeasures for FPSO Topside area through investigation of noise analysis and site measurement results. Proper countermeasures, considering the characteristics of sources and receiver spaces, were applied from the noise prediction and various measurement results. Finally, this ship was successfully delivered with excellent noise properties.

  • PDF

Analytical Research of Topside Installation in Mating phase with Crane Vessel

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.1-6
    • /
    • 2011
  • The installation of a topside structure can be categorized into the following stages: start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the module onto the floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with a significant wave height (1.52m). The effects of the hydrodynamic interactions between the heavy lifting vessel and the spar hull during the lowering and mating stages are considered. The internal forces caused by the load transfer and ballasting are derived for the mating phases. The results of the internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of the pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the mating phases, the internal force induced pitch motion is too small to have this influence. However, the effect of the internal force on the wave-induced heave responses in the mating phases is noticeable in the irregular sea condition because transfer mass-induced draught changes for the floating structure are observed to have higher amplitudes than the external force induced responses. The impacts of the module on the spar hull in the mating phase are investigated.

Dynamic Analysis of Topside Module in Lifting Installation Phase

  • Lee, Jong-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.7-11
    • /
    • 2011
  • The installation phase for a topside module suggested can be divided into 9 stages, which include start, pre-lifting, lifting, lifted, rotating, positioning, lowering, mating, and end of installation. The transfer of the topside module from a transport barge to a crane vessel takes place in the first three stages, from start to lifting, while the transfer of the module onto a floating spar hull occurs in the last three stages, from lowering to the end. The coupled multi-body motions are calculated in both calm water and in irregular waves with significant wave height (1.52m), with suggested force equilibrium diagrams. The effects of the hydrodynamic interactions between the crane vessel and barge during the lifting stage have been considered. The internal forces caused by the load transfer and ballasting are derived for the lifting phases. The results of these internal forces for the calm water condition are compared with those in the irregular sea condition. Although the effect of pitch motion on the relative vertical motion between the deck of the floating structure and the topside module is significant in the lifting phases, the internal force induced pitch motion is too small to show its influence. However, the effect of the internal force on the wave-induced heave responses in the lifting phases is noticeable in the irregular sea condition because the transfer mass-induced draught changes in the floating structure are observed to have higher amplitudes than the external force induced responses.

Spectral Fatigue Analysis for Topside Structure of Offshore Floating Vessel

  • Kim, Dae-Ho;Ahn, Jae-Woo;Park, Sung-Gun;Jun, Seock-Hee;Oh, Yeong-Tae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.239-251
    • /
    • 2015
  • In this study, a spectral fatigue analysis was performed for the topside structure of an offshore floating vessel. The topside structure was idealized using beam elements in the SACS program. The fatigue analysis was carried out considering the wave and wind loads separately. For the wave-induced fatigue damage calculation, motion RAOs calculated from a direct wave load analysis and regular waves with different periods and unit wave heights were utilized. Then, the member end force transfer functions were generated covering all the loading conditions. Stress response transfer functions at each joint were produced using the specified SCFs and member end force transfer functions. fatigue damages were calculated using the obtained stress ranges, S-N curve, wave spectrum, heading probability of each loading condition, and their corresponding occurrences in the wave scatter diagrams. For the wind induced fatigue damage calculation, a dynamic wind spectral fatigue analysis was performed. First, a dynamic natural frequency analysis was performed to generate the structural dynamic characteristics, including the eigenvalues (natural frequencies), eigenvectors (mode shapes), and mass matrix. To adequately represent the dynamic characteristic of the structure, the number of modes was appropriately determined in the lateral direction. Second, a wind spectral fatigue analysis was performed using the mode shapes and mass data obtained from the previous results. In this analysis, the Weibull distribution of the wind speed occurrence, occurrence probability in each direction, damping coefficient, S-N curves, and SCF of each joint were defined and used. In particular, the wind fatigue damages were calculated under the assumption that the stress ranges followed a Rayleigh distribution. The total fatigue damages were calculated from the combination with wind and wave fatigue damages according to the DNV rule.

Structural Safety Evaluation for the Hydraulic Power Unit of Topside Module According to the Movement of Offshore Plant (해양구조물 움직임에 따른 Topside Module의 HPU에 대한 구조안전성 평가)

  • Ryu, Bo-Rim;Lee, Jin-Uk;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.723-731
    • /
    • 2020
  • The design of offshore plants should reflect the various requirements of the owner and the classification society. For a topside module mounted on an of shore structure, the design process is very demanding because of the large spatial constraints and the many requirements related to marine environmental conditions and safety such as the movement of the structure. In this study, the load acting on the hydraulic power unit, which is one of the main equipment in the topside module, was calculated according to the DNVGL rule; the structural safety was evaluated according to each load condition and the structural reliability of the developed product was improved. For structural analysis, MSC software was used, and structural analysis was performed under five load conditions to review structural safety for various movements. The results show that the maximum stress occurred during pitching toward the stern (Load Case 5). The stress level was approximately 85 % of the allowable stress, and the maximum deformation was approximately 5 % of the allowable value. The structural safety was confirmed, and no intermember interference occurred.