• Title/Summary/Keyword: torsional mode

Search Result 230, Processing Time 0.022 seconds

Lateral-torsional seismic behaviour of plan unsymmetric buildings

  • Tamizharasi, G.;Prasad, A. Meher;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.239-260
    • /
    • 2021
  • Torsional response of buildings is attributed to poor structural configurations in plan, which arises due to two factors - torsional eccentricity and torsional flexibility. Usually, building codes address effects due to the former. This study examines both of these effects. Buildings with torsional eccentricity (e.g., those with large eccentricity) and with torsional flexibility (those with torsional mode as a fundamental mode) demand large deformations of vertical elements resisting lateral loads, especially those along the building perimeter in plan. Lateral-torsional responses are studied of unsymmetrical buildings through elastic and inelastic analyses using idealised single-storey building models (with two degrees of freedom). Displacement demands on vertical elements distributed in plan are non-uniform and sensitive to characteristics of both structure and earthquake ground motion. Limits are proposed to mitigate lateral-torsional effects, which guides in proportioning vertical elements and restricts amplification of lateral displacement in them and to avoid torsional mode as the first mode. Nonlinear static and dynamic analyses of multi-storey buildings are used to validate the limits proposed.

Synthetic Phase Tuning Technique for the Transduction of a Specific Ultrasonic Torsional Mode in a Pipe (배관에서의 특정 비틀림 초음파 모드 송수신을 위한 합성 위상 조절 기법)

  • Kim, Hoe Woong;Kwon, Young Eui;Joo, Young Sang;Kim, Jong Bum;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • This study newly presents a synthetic phase tuning technique to suppress the unwanted torsional mode while enhancing the desired torsional mode in a pipe. Specifically, we aim at the enhancement of the first torsional mode and the suppression of the undesired, second torsional mode. Earlier efforts were to enhance the desired wave mode only in the hope that the enhancement results in the suppression of the unwanted wave mode. Unlike these efforts, the suggested technique makes the complete cancellation of the unwanted wave mode but it is shown to enhance the desired first mode for torsional wave problems. In the present study, the synthetic phase tuning is developed for the cancellation of the unwanted wave mode, meaning that the number of necessary experimental equipments is reduced. Simulation and experiment were carried out to check the effectiveness of the proposed method. As an application of the suggested technique, we investigated the reflection and mode conversion characteristics of the first torsional mode according to the step thickness variation in a stepped pipe.

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

A Study on MsS Guided Wave Scattering from Defects (MsS Guided Wave를 이용한 결함 신호의 분석에 관한 연구)

  • Choi, Boo-Il;Cho, Youn-Ho;Lee, Joon-Hyun;Shin, Dong-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • An investigation has been made on the relationship between characteristics of torsional mode signal in MsS and SH mode signal in BEM modeling for the defect of stainless steel pipe. In order to compare torsional mode signal with SH mode signal of defect in stainless steel pipe, specimens were made by changing size of depth and width along to circumferential direction 360 degrees. All the defects was detected by torsional mode signal of MsS, especially according to the change of depth size, amplitude of signal was changed. But width change for the circumferential defects has no certain tendency. SH mode signal of BEM modeling shows similar results with torsional mode, with change makes amplitude variation of signal. In this paper, the characteristics of torsional mode and SH mode signals were found. It is possible to predict the circumferential defects for the pipe by SH mode modeling.

Torsional free vibration analysis of heavy duty powertrain (대형트럭 구동계의 비틀림 자유진동해석)

  • Ahn, Byoung-Min;Hong, Dong-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.2
    • /
    • pp.437-443
    • /
    • 1998
  • Automobile company tries to reduce the inertia of powertrain to increase the fuel efficiency and increase the engine power every year to make the high speed driving possible at full load condition. These cause the torsional vibration of powertrain. But the demand about ride comfort improvement is increased constantly, so torsional vibration of powertrain become an emergency problem to be cured. This study is a basic research to reduce the torsional vibration of powertrain at driving condition. First, the heavy duty powertrain is characterized as a vibrating system. Its natural frequencies and mode shapes are reviewed. Second, by comparison of simulation results and experiment results, validity of developed model is verified. Finally, the couterplan which can reduce the torsional vibration by mode analysis and parameter modification is suggested.

Flaw Detection of Petrochemical Pipes using Torsional Waves (비틀림파를 이용한 석유화학 파이프의 결함탐지)

  • Park, K.J.;Kang, W.S.;Kang, D.J.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.46-51
    • /
    • 2010
  • A torsional guided wave was applied to detect a defect in petrochemical pipes. Phase and group velocity dispersion curves for the longitudinal and torsional modes of the inspected pipe were presented for the theoretical analysis. It was found through mode shape analysis that there was mode conversion when torsional wave is incident at an asymmetric defect. An artificial notch was fabricated in the pipe and the detectability was examined from the distance 2m of the end of the pipe by using magnetostrictive sensors. The relativities between the amplitude of the reflected signal and the size of the defect was examined. It was shown that the T(0,1) mode could be used for the long range inspection for the petrochemical pipes.

Vibration Characteristics of Langevin-Type Piezoelectric Torsional Transducers (랑주방형 압전 비틀림 변환기의 진동특성)

  • Kwon, Oh-Soo;Kim, Jin-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.612-617
    • /
    • 2000
  • The vibrational characteristics of Langevin-type piezoelectric torsional transducers have been studied theoretically and experimentally in this paper. The differential equations of piezoelectric torsional motion have been derived in terms of the circumferential displacement and the electric potential. Solutions of the boundary-value problem have yielded the natural frequencies and mode shapes of the transducers. The theoretical solutions have been verified by comparing the numerical results with experimental ones.

  • PDF

Research for Stepping Motor Using Piezoelectric Torsional Actuator (압전회전작동기를 이용한 스텝모터에 관한 연구)

  • Kim Jun Hyuk;Kim Jaehwan;Chung Dal Do
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.499-505
    • /
    • 2005
  • In this paper, a new type of pi+ezoelectric stepping motor is designed, manufactured and tested. This motor is composed of piezoelectric torsional actuator and a pair of one-way clutch bearings. The torsional actuator consists of 16-polygonal tube of piezoceramic that can produce an angular displacement associated with shear mode. One-way clutch bearing converts oscillation of torsional actuator into a continuous stepping rotation. The proposed stepping motor does not require any conversion mechanism for stepping motion like any other motors. In the design process, the shear resonance mode of piezoelectric actuator is analyzed by using a commercial finite element analysis program, and the performance of the fabricated torsional actuator is measured. $0.124^{\circ}$ of maximum angular displacement is measured in square wave excitation on the actuator only. The stepping motor is manufactured by assembling a pair of one-way clutch bearings and the torsional actuator. The maximum rotation speed of 72rpm and the blocking torque of 3.136 mNm are measured at 3540 Hz and 100V/mm. Once the proposed piezoelectric stepping motor is miniaturized, it can be used for many compact and precise moving applications.

Computer Simulation of Powertrain Forced Torsional Vibration (차량주행시 동력전달계의 강제진동 해석)

  • 최은오;안병민;홍동표
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.853-860
    • /
    • 1997
  • For this study, the multi-degree of freedom analysis model of torsional vibration was developed. This model is combined with mass moment of inertia and torsional spring in two wheel drive and four wheel drive vehicle. We compared and analyzed torsional vibration characteristics by natural frequencies and mode shapes which are obtained by free vibration analysis of this model. And we studied torsional vibration contribution of driveline elements by performing the forced vibration analysis of engine excitation torque. The validity of this model is demonstrated by the field test. The reduction effect of the torsional vibration along the driveline design factor is presented by the analytical results.

  • PDF