• Title/Summary/Keyword: total ROS

Search Result 328, Processing Time 0.025 seconds

Inhibitory Activity of Flavonoids from Prunus davidiana and Other Flavonoids on Total ROS and Hydroxyl Radical Generation

  • Jung, Hyun-Ah;Jung, Mee-Jung;Kim, Ji-Young;Chung, Hae-Young;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.809-815
    • /
    • 2003
  • Since reactive oxygen species (ROS) and hydroxyl radicals ($^-OH$) play an important role in the pathogenesis of many human degenerative diseases, much attention has focused on the development of safe and effective antioxidants. Preliminary experiments have revealed that the methanol (MeOH) extract of the stem of Prunus davidiana exerts inhibitory/scavenging activities on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals, total ROS and peroxynitrites ($ONOO^-$). In the present study, the antioxidant activities of this MeOH extract and the organic solvent-soluble fractions, dichloromethane (CH$_2$Cl$_2$), ethyl acetate (EtOAc), and n-butanol (n-BuOH), and the water layer of P. davidiana stem were evaluated for the potential to inhibit $^-OH$ and total ROS generation in kidney homogenates using 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA), and for the potential to scavenge authentic $ONOO^-$. We also evaluated the inhibitory activity of seven flavonoids isolated from P. davidiana stem, kaempferol, kaempferol 7-Ο-$\beta$-D-glucoside, (+)-catechin, dihydrokaempferol, hesperetin 5-Ο-$\beta$-D-glucoside, naringenin and its 7-Ο-$\beta$-D-glucoside, on the total ROS, $^-OH$ and $ONOO^-$ systems. For the further elucidation of the structure-inhibitory activity relationship of flavonoids on total ROS and 'OH generation, we measured the antioxidant activity of sixteen flavonoids available, including three active flavonoids isolated from P. davidiana, on the total ROS and 'OH systems. We found that the inhibitory activity on total ROS generation increases in strength with more numerous hydroxyl groups on their structures. Also, the presence of an ortho-hydroxyl group, whether on the Aring or S-ring, and a 3-hydroxyl group on the C-ring increased the inhibitory activity on both total ROS and $^-OH$ generation.

Inhibitory Phlorotannins from the Edible Brown Alga Ecklonia stolonifera on Total Reactive Oxygen Species (ROS) Generation

  • Kang, Hye-Sook;Chung, Hae-Young;Kim, Ji-Young;Son, Byeng-Wha;Jung, Hyun-Ah;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.194-198
    • /
    • 2004
  • Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2',7'-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species: UIva pertusa, Symphyocladia latiuscula, and Ecklonia stolonifera. At a final concentration of 25 $\mu\textrm{g}$/mL, U. pertusa inhibited 85.65$\pm$20.28% of total ROS generation, S. latiscula caused 50.63$\pm$0.09% inhibitory, and the Ecklonia species was 44.30$\pm$7.33% inhibition. E. stolonifera OKAMURA (Lam-inariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extrclct of E. stolonifera inhibited total ROS generation.

Scavenging Effect of Korean Medicinal Plants on the Peroxynitrite and Total ROS

  • Kang, Hye-Sook;Chung, Hae-Young;Son, Kun-Ho;Kang, Sam-Sik;Choi, Jae-Sue
    • Natural Product Sciences
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2003
  • To discover the sources with antioxidative activity in traditional medicines, 100 extracts of Korean medicinal plants were screened for their scavenging effect on peroxynitrite $(ONOO^{-})$ and total reactive oxygen species (ROS). The potency of total ROS scavenging activity was shown in the extracts of 25 plants, and 4 of their species, Macleaya cordata R. Br., Salvia plebeia R. Br., Cassia tora L. and Angelica gigas Nakai, had a greater effect with $IC_{50}$ values of $1.7{\pm}0.36$, $4.3{\pm}1.08$, $4.9{\pm}0.17$ and $5.8{\pm}1.01\;{\mu}g/ml$, respectively, than that of trolox, positive control $(7.61{\pm}0.12\;{\mu}g/ml)$. Another 35 extracts exhibited inhibitory effect of below 50 percent at $100\;{\mu}g/ml$ of sample concentrations on total ROS, while the rest observed total ROS generators rather than scavengers. The peroxynitrite scavenging activities were observed in the greater part of the plants tested. Five of them, Schisandra chinensis Baill, Campsis grandiflora (Thunb.) K. Schum., Cedrela sinensis A. Juss., Pleuropterus multiflorus Turcz. and Veronica linariaefolia Pall represented scavenging activities on peroxynitrite twice as strong with $IC_{50}$ Values of $0.48{\pm}0.10$, $0.59{\pm}0.15$, $0.60{\pm}0.10$, $0.64{\pm}0.10$ and $0.91{\pm}0.23\;{\mu}g/ml$, respectively, as that of penicillamine $(1.72{\pm}0.05\;{\mu}g/ml)$, positive control. Consequently, 25 species of the entire plants tested, exhibited scavenging activities on total ROS and $ONOO^{-}$, Salvia plebeia R. Br., Macleaya cordata R. Br., Cassia tora L. and Angelica gigas Nakai exerted potent scavenging activities on both radicals.

The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility

  • Sharma, Rakesh K.;Pasqualotto, Fabio F.;Nelson, David R.;Thomas Jr, Anthony J.;Agarwal, Ashok
    • 대한생식의학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.29-35
    • /
    • 2000
  • The imbalance between reactive oxygen species (ROS) production and total antioxidant capacity (TAC) in seminal fluid indicates oxidative stress and is correlated with male infertility. A composite ROS-TAC score may be more strongly correlated with infertility than ROS or TAC alone. We measured ROS, TAC, and ROS-TAC scores in semen from 127 patients and 24 healthy controls. Of the patients, 56 had varicocele, eight had varicocele with prostatitis, 35 had vasectomy reversals, and 28 had Idiopathic infertility. ROS levels were higher among infertile men, especially those with varicocele with prostatitis (mean ${\pm}$ SE, 3.25 ${\pm}$ 0.89) and vasectomy reversals (2.65 ${\pm}$ 1.01). All infertility groups had significantly lower ROS-TAC scores than control. ROS-TAC score identified 80% of patients and was significantly better than ROS at identifying varicocele and idiopathic infertility. The 13 patients whose partners later achieved pregnancies had a mean ROS-TAC score of 47.7 ${\pm}$ 13.2, similar to controls but significantly higher than the 39 patients who remained infertile (35.8 ${\pm}$ 15.0; P < 0.01). ROS-TAC score is a novel measure of oxidative stress and Is superior to ROS or TAC alone in discriminating between fertile and infertile men. Infertile men with male factor or idiopathic diagnoses had significantly lower ROS-TAC scores than controls, and men with male factor diagnoses that eventually were able to initiate a successful pregnancy had significantly higher ROS-TAC scores than those who failed.

  • PDF

THE EFFECT OF KOREAN RED GINSENG SAPONIN ON THE ALKALINE PHOSPHATASE ACTIVITY OF RAT OSTEOBLASTIC CELL(ROS17/2.8) IN CULTURE (한국 홍삼사포닌이 배양중인 쥐 조골세포의 염기성 인산분해효소 활성도에 미치는 영향)

  • Jung, Jin-Kwang;Kim, Jung-Keun;Lee, Jae-Hyoun
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.694-702
    • /
    • 1995
  • Using the Korean red ginseng saponin, which is known to world-wide and thd effects of it have been investigated by many reserachers for years. Ginseng saponin, one of the major components of Korea ginseng root, has many various biologic effects, such as cytotoxic effect, tumorcidal activity, protein biosynthesis and membrane modifying effect. The purpose of this study was to evaluate effects of ginseng saponin on the alkaline phosphatase activity of ROS cells in culture. After ROS cells were seeded into a 96-well plate, 96-well plate cultured until confluence was obtained. To evaluate cytotoxic effect of total saponin in cultured ROS cells, the plates were added to each total saponin concentration (0-1mg/ml). After 48hr., cells were counted by stain with 0.2% trypan blue at randomly selected field microscopically. Also, to evaluate alkaline phosphatase(ALP) activity of total saponin in cultured ROS cell, the plate was added to each total saponin concentration (0-1mg/ml) and ALP activity was assayed. To evaluate time-course of ALP activity, $31.25{\mu}g/ml$ of saponin added to 96-well plate. After culture of 6, 12, 24 and 48hr., ALP activity test was performed. To evaluate effect of cycloheximide in ALP activity, 96-well plate was added to saponin and cycloheximide. In control group, the plate was added saponin only. The results were as follows. 1. After the various concentration of total saponin was added in the medium, 500 and $1000{\mu}g/ml$ of total saponin showed cytotoxic effect of ROS(P<0.005). 2. In contrast to control group, 7.6, 15.6, 31.25, 62.5 and $250{\mu}g/ml$ of total saponin increased ALP activity significantly. 3. Otherwise, 500 and $1000{\mu}g/ml$ of total saponin decreased ALP activity significantly(P<0.005). 4. As the time span increases, $31.25{\mu}g/ml$ of total saponin increased ALP activity. 5. Cycloheximide decreased saponin-indueced ALP actitity in ROS(P<0.005). These results suggest that Ginseng total saponin stimulates the ALP activity of rat osteoblastic cells.

  • PDF

Further Isolation of Antioxidative $(+)-1-Hydroxypinoresinol-1-O-{\beta}-D-glucoside$ from the Rhizome of Salvia miltiorrhiza that Acts on Peroxynitrite, Total ROS and 1,1-Diphenyl-2-picrylhydrazyl Radical

  • Kang, Hye-Sook;Chung, Hae-Young;Byun, Dae-Seok;Choi, Jae-Sue
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.24-27
    • /
    • 2003
  • A furanofuranoid lignan glycoside, with radical scavenging on peroxynitrite, total reactive oxygen species (ROS) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, was isolated from the rhizome of Salvia miltiorrhiza and characterized as (+)-1-hydroxypinoresinol-1-Ο-$\beta$-D-glucoside based on spectroscopic evidence. The compound exhibited peroxynitrite, total ROS and DPPH radical scavenging activities with $IC_{50}$ values of 3.23$\pm$0.04, 2.26$\pm$0.07 and 32.3$\pm$0.13 $\mu$M, respectively. Penicillamine, Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and L-ascorbic acid, acting as positive controls, showed radical scavenging activities with $IC_{50}$ values of 6.72$\pm$0.25, 1.43$\pm$0.04 and 11.4$\pm$0.07 $\mu$M, respectively.

Rhamnazin inhibits LPS-induced inflammation and ROS/RNS in raw macrophages

  • Kim, You Jung
    • Journal of Nutrition and Health
    • /
    • v.49 no.5
    • /
    • pp.288-294
    • /
    • 2016
  • Purpose: The aim of this work was to investigate the beneficial effects of rhamnazin against inflammation, reactive oxygen species (ROS)/reactive nitrogen species (RNS), and anti-oxidative activity in murine macrophage RAW264.7 cells. Methods: To examine the beneficial properties of rhamnazin on inflammation, ROS/ RNS, and anti-oxidative activity in the murine macrophage RAW264.7 cell model, several key markers, including COX and 5-LO activities, $NO^{\cdot}$, $ONOO^-$, total reactive species formation, lipid peroxidation, $^{\cdot}O_2$ levels, and catalase activity were estimated. Results: Results show that rhamnazin was protective against LPS-induced cytotoxicity in macrophage cells. The underlying action of rhamnazin might be through modulation of ROS/RNS and anti-oxidative activity through regulation of total reactive species production, lipid peroxidation, catalase activity, and $^{\cdot}O_2$, $NO^{\cdot}$, and $ONOO^{\cdot}$ levels. In addition, rhamnazin down-regulated the activities of pro-inflammatory COX and 5-LO. Conclusion: The plausible action by which rhamnazin renders its protective effects in macrophage cells is likely due to its capability to regulate LPS-induced inflammation, ROS/ RNS, and anti-oxidative activity.

Anti-Oxidant Efficiency and Memchanisms of Phytochemicals from Traditional Herbal Medicine (한약재-식물성천연화학물질의 항산화 효능 및 기전)

  • Kim, Jong-Bong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.12 no.1
    • /
    • pp.103-118
    • /
    • 2008
  • Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species (ROS). Some ROS, such as superoxide and hydrogen peroxide, are normally produced in cells as by-products of biochemical reactions or as signaling molecules. When ROS-generating reactions are activated excessively, pathological quantities of ROS are released to create an imbalance between antioxidants and ROS, called as oxidative stress. Oxidative stress, which may result in cellular damage, has been linked to cardiovascular disease, diabetes, cancer, and other degenerative conditions. In humans the first line of antioxidant defence are the antioxidant enzymes, especially SOD, glutathione peroxidase (GPX), and to a lesser extent catalase, as well as the tripeptide glutathione(GSH). These enzymes will help destroy ROS(reactive oxygen species) such as hydroxyl radical, $H_2O_2$ and lipid peroxides, while GSH protects against oxidized protein. Many herbal medicines possess antioxidant properties. Herbal antioxidants may protect against these diseases by contributing to the total antioxidant defense system of the human body. Here, many herbal medicines including Ginseng, Licorice, Ligusticum Chuanxiong, Ginkgo biloba and many others was reviewed in terms of anti-oxidant efficiency related to their components.

  • PDF

Effect of Genistein on Activity and Expression of Antioxidant Enzyme in Hamster ovary cells (Genistein이 햄스터 난소세포의 항산화효소활성과 발현에 미치는 영향)

  • Kim, Min-Hye;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • Reactive oxygen species (ROS) are produced in the metabolic process of oxygen in cells. The superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in cells systemize the antioxidant enzymes to control the oxidative stress. Genistein is one of the isoflavonoids, and its role in controlling cellular oxidative stress is presently the active issue at question. In this study; we analyzed genistein-induced survival rates of the CHO-K1 cells, activities of antioxidant enzymes, ROS levels, and expression levels of antioxidant enzyme genes in order to investigate the effect of genistein on cellular ROS production and antioxidative systems in CHO-K1 cells. As results, the survival rate of cells was decreased as the dose of genistein increases (12.5${\sim}$200 ${\mu}$M). Genistein increased cellular ROS levels, while it reduced total SOD activities and the expression of CuZnSOD. In conclusion, we suggest that genistein may induce oxidative stress via down-regulation of SOD.

Effects of Puerariae Radix extract on the activity of antioxidant (갈근(葛根) 추출물이 항산화에 미치는 영향)

  • Eun, Young-Joon;Song, Yun-Kyung;Lim, Hyung-Ho;Kwon, Ki-Rok;Rhim, Tae-Jin
    • Journal of Pharmacopuncture
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2007
  • Objective The objective of this study was to investigate the antioxidative effects of Puerariae Radix extract. Method Total antioxidant capacity (TAC), Total antioxidant response (TAR), Total phenolic content, Reactive oxygen species (ROS), 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities, lipid peroxidation were examined. Result Total antioxidant status was examined by total antioxidant capacity(TAC) and total antioxidant response(TAR) against potent free radical reactions. TAC and TAR of Puerariae Radix extract at the concentration of 5 mg/ml were 2.02 and 1.50 mM Trolox equivalents, respectively. Total phenolic content of Puerariae Radix extract at the concentration of 5 mg/ml was 2.29 mM gallic acid equivalent. Concentration of Puerariae Radix extract at which DPPH radical scavenging activity was inhibited by 50% was 5.91 mg/ml as compared to 100% by pyrogallol solution as a reference. The inhibitory effect of the extract on lipid peroxidation was examined using rat liver mitochondria induced by FeSO4/ascorbic acid. Puerariae Radix extract at the concentration of 1 mg/ml slightly but significantly decreased TBARS concentration. The extract further prevented lipid peroxidation in a dose-dependent manner. The effect of Puerariae Radix extract on reactive oxygen species (ROS) generation was examined using cell-free system induced by hydrogen peroxide/FeSO4. Addition of 1 mg/ml of Puerariae Radix extract significantly reduced dichloroflurescein (DCF) fluorescence. The extract caused concentration-dependent attenuation of the increase in DCF fluorescence, indicating that the extract significantly prevented ROS generation in vitro. Thus antioxidant effects of Puerariae Radix extract seem to be due to, at least in part, the prevention from free radicals-induced oxidation, followed by inhibition of lipid peroxidation. Conclusion As a result, Puerariae Radix seems to have antioxitative effect and antioxidant compount.