• Title/Summary/Keyword: total transfer capability

Search Result 62, Processing Time 0.026 seconds

Assessment of Total Transfer Capability Using IPLAN: An Application of UPFC for Total Transfer Capability Enhancement

  • Lee Byung Ha;Kim Jung-Hoon;Kwak No-Hong;Lee Woon-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.244-251
    • /
    • 2005
  • Power transfer capability has been recently highlighted as a key issue in many utilities. It is determined by the thermal stability, dynamic stability and voltage stability limits of generation and transmission systems. In particular, voltage stability affects power transfer capability to a great extent in many power systems. This paper presents a tool for determining total transfer capability from a static voltage stability viewpoint using IPLAN, which is a high level language used with the PSS/E program. The tool was developed so as to analyze static voltage stability and to determine the total transfer capability between different areas from a static voltage stability viewpoint by tracing stationary behaviors of power systems. A unified power flow controller (UPFC) is applied for enhancing total transfer capability between different areas from the viewpoint of static voltage stability. Evaluation of the total transfer capability of a practical KEPCO power system is performed from the point of view of static voltage stability, and the effect of enhancing the total transfer capability by UPFC is analyzed.

Probabilistic Approach to Time Varying Available Transfer Capability Calculation (확률론적 기법을 이용한 시변 가용송전용량 결정)

  • Shin, Dong-Jun;Kim, Kyu-Ho;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.533-539
    • /
    • 2005
  • According to NERC definition, Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity. To calculate Available Transfer Capability, accurate and defensible Total Transfer Capability, Capacity Benefit Margin and Transmission Reliability Margin should be calculated in advance. This paper proposes a method to quantify time varying Available Transfer Capability based on probabilistic approach. The uncertainties of power system and market are considered as complex random variables. Total Transfer Capability is determined by optimization technique such as SQP(Sequential Quadratic Programming). Transmission Reliability Margin with the desired probabilistic margin is calculated based on Probabilistic Load Flow analysis, and Capacity Benefit Margin is evaluated using LOLE of the system. Suggested Available Transfer Capability quantification method is verified using IEEE RTS with 72 bus. The proposed method shows efficiency and flexibility for the quantification of Available Transfer Capability.

A Study on Location of STATCOM for Improvement of Total Transfer Capability and Analysis of Total Transfer Capability Considering Transient Stability (전체송전용량 향상을 위한 STATCOM 설비의 적용 위치 선정 및 과도안정도를 고려한 전체송전용량 분석)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • The power transfer capability has been recently highlighted as a key issue in many utilities with the power system more stressed and heavy loaded. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and many approaches for enhancement of the total transfer capability has been consistently performed. In this paper, a new transfer capability index to locate the STATCOM(Static Synchronous Compensator) effectively for enhancing the total transfer capability from a static voltage stability viewpoint is presented and it is applied to a small scale power system of IEEE 39-bus test system in order to show the effects of this index. In addition, the effect of transient stability as well as voltage stability to the total transfer capability when loads are increased is analyzed using this small scale power system.

Calculation of CBM, TRM and ATC using Quadratic Function Approximation (이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정)

  • 이효상;신상헌;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

Contingency Ranking for Determining Total Transfer Capability from Voltage Stability Point of View (전체송전용량 결정을 위한 전압안정도 측면에서의 상정사고 순위 매김)

  • Lee, Byung-Ha;Baek, Jung-Myoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.148-154
    • /
    • 2008
  • The power transfer capability has been recently highlighted as a key issue in many utilities. The total transfer capability in the KEPCO power system is determined mainly by the voltage stability limit and an enormous number of contingencies should be analyzed to determine the total transfer capability. In this paper, a new ranking index for determining the total transfer capability from voltage stability point of view is presented. This index is applied to the practical system of KEPCO and the effects of ranking the contingencies are analyzed by use of PSS/E package and a developed IPLAN program.

Enhancement Power System Transfer Capability Program (PSTCP) To Calculate Total Transfer Capability in Power Systems (전력계통의 TTC(Total Transfer Capability) 산정을 위한 수송능력평가 프로그램 향상)

  • Kim, Sang-Ahm;Lee, Byung-Jun;Song, Kil-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper presents a sequential framework that calculates the total transfer capabilities of power transmission systems. The proposed algorithm enhances the Power System Transfer Capability Program (PSTCP) in conjunction with the Continuation Power Flow(CPF) that is used for steady-state voltage stability analysis and modified Arnoldi-Chebyshev method that calculates rightmost eigenvalues for small signal stability analysis. The proposed algorithm is applied to IEEE 39-bus test system to calculate TTC.

  • PDF

A Study of TRM and ATC Determination for Electricity Market Restructuring (전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구)

  • 이효상;최진규;신동준;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

Assessment of Available Transfer Capability (ATC) considering Real-time Weather Conditions (실시간 기상상태를 고려한 가용송전용량 산정)

  • Kim, Dong-Min;Bae, In-Su;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.485-491
    • /
    • 2010
  • Total Transfer Capability (TTC) should be pre-determined in order to estimate Available Transfer Capability (ATC). Typically, TTC is determined by considering three categories; voltage, stability and thermal limits. Among these, thermal limits are treated mainly in this paper on the evaluation of TTC due to the relatively short transmission line length of Korea Electric Power Corporation (KEPCO) system. This paper presents a new approach to evaluate the TTC using the Dynamic Line Rating (DLR) for the thermal limit. Since the approach includes not only traditional electrical constraints but also real-time environmental constraints, this paper obtains more cost-effective and exact results. A case study using KEPCO system confirms that the proposed method is useful for real-time operation and the planning of the electricity market.

Comparison of Optimization Algorithms for Available Transfer Capability Assessment in Interconnected Systems (연계계통에서 가용송전용량 평가를 위한 최적화 알고리즘의 비교)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.549-554
    • /
    • 2006
  • Available transfer capability(ATC) is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading in power transaction activities. This paper deals with an application of optimization technique for available transfer capability(ATC) calculation and analyzes the results of ATC by considering several constraints. Especially several optimization techniques are used to solve the ATC problem with state-steady security constraints. The results are compared with that of repeat power flow(RPF), sequential quadratic programming(SQP) and linear programming(LP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

Assessment of Total Transfer Capability Considering Transient Stability (과도 안정도를 고려한 총 송전용량 평가)

  • Park, Jin-Wook;Bae, In-Su;Kim, Jin-O;Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.94-99
    • /
    • 2005
  • This paper presents a method to assess total transfer capability(TTC) considering transient stability. TTC is limited not only by the violation of system voltage and thermal limits, but also restricted by transient stability limit, TTC calculation is divided into two processes. The frist step is to calculate TTC without considering the transient stability constraint by using repeated power flow(RPF) method. The second step is to perform transient stability analysis based on TTC calculation in the frist step.