• 제목/요약/키워드: total transfer capability

검색결과 62건 처리시간 0.031초

Assessment of Total Transfer Capability Using IPLAN: An Application of UPFC for Total Transfer Capability Enhancement

  • Lee Byung Ha;Kim Jung-Hoon;Kwak No-Hong;Lee Woon-Hee
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.244-251
    • /
    • 2005
  • Power transfer capability has been recently highlighted as a key issue in many utilities. It is determined by the thermal stability, dynamic stability and voltage stability limits of generation and transmission systems. In particular, voltage stability affects power transfer capability to a great extent in many power systems. This paper presents a tool for determining total transfer capability from a static voltage stability viewpoint using IPLAN, which is a high level language used with the PSS/E program. The tool was developed so as to analyze static voltage stability and to determine the total transfer capability between different areas from a static voltage stability viewpoint by tracing stationary behaviors of power systems. A unified power flow controller (UPFC) is applied for enhancing total transfer capability between different areas from the viewpoint of static voltage stability. Evaluation of the total transfer capability of a practical KEPCO power system is performed from the point of view of static voltage stability, and the effect of enhancing the total transfer capability by UPFC is analyzed.

확률론적 기법을 이용한 시변 가용송전용량 결정 (Probabilistic Approach to Time Varying Available Transfer Capability Calculation)

  • 신동준;김규호;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권11호
    • /
    • pp.533-539
    • /
    • 2005
  • According to NERC definition, Available Transfer Capability (ATC) is a measure of the transfer capability remaining in the physical transmission network for the future commercial activity. To calculate Available Transfer Capability, accurate and defensible Total Transfer Capability, Capacity Benefit Margin and Transmission Reliability Margin should be calculated in advance. This paper proposes a method to quantify time varying Available Transfer Capability based on probabilistic approach. The uncertainties of power system and market are considered as complex random variables. Total Transfer Capability is determined by optimization technique such as SQP(Sequential Quadratic Programming). Transmission Reliability Margin with the desired probabilistic margin is calculated based on Probabilistic Load Flow analysis, and Capacity Benefit Margin is evaluated using LOLE of the system. Suggested Available Transfer Capability quantification method is verified using IEEE RTS with 72 bus. The proposed method shows efficiency and flexibility for the quantification of Available Transfer Capability.

전체송전용량 향상을 위한 STATCOM 설비의 적용 위치 선정 및 과도안정도를 고려한 전체송전용량 분석 (A Study on Location of STATCOM for Improvement of Total Transfer Capability and Analysis of Total Transfer Capability Considering Transient Stability)

  • 이병하;백정명
    • 조명전기설비학회논문지
    • /
    • 제24권4호
    • /
    • pp.17-24
    • /
    • 2010
  • 송변전설비들이 점점 중부하로 운용되어짐에 따라 송전용량이 전력회사에서 중요한 문제로 부각되어 왔다. 한전 시스템의 경우 전체송전용량은 주로 전압 안정도에 의해 제한을 받고 있으며, 이의 향상을 위한 연구들이 계속하여 수행되어 오고 있다. 본 논문에서는 전압안정도 관점에서의 전체송전용량을 향상시키기 위하여 STATCOM 설비를 설치하는 위치를 효과적으로 선택하기 위한 송전용량지수가 제시된다. 이 지수를 소규모 전력시스템인 IEEE 39모선 시스템에 적용하여 제시된 지수의 효과를 보여준다. 그리고, 이 소규모 시스템을 활용하여 부하가 증가할 때 전체송전용량에 전압안정도뿐 만이 아니라 과도안정도가 미치는 영향을 분석한다.

이차함수 근사화를 이용한 가용송전용량과 송전신뢰 및 설비편익 여유도 산정 (Calculation of CBM, TRM and ATC using Quadratic Function Approximation)

  • 이효상;신상헌;신동준;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권5호
    • /
    • pp.296-301
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. Available Transfer Capability (ATC) calculation is a complicated task, which involves the determination I of total transfer capability (TTC), transmission reliability margin (TRM) and capability benefit margin (CBM). As the electrical power industry is restructured and the electrical power exchange is updated per hour, it is important to accurately and rapidly quantify the available transfer capability (ATC) of the transmission system. In ATC calculation,. the existing CPF method is accurate but it has long calculation time. On the contrary, the method using PTDF is fast but it has relatively a considerable error. This paper proposed QFA method, which can reduce calculation time comparing with CPF method and has few errors in ATC calculation. It proved that the method can calculate ATC more fast and accurately in case study using IEEE 24 bus RTS.

전체송전용량 결정을 위한 전압안정도 측면에서의 상정사고 순위 매김 (Contingency Ranking for Determining Total Transfer Capability from Voltage Stability Point of View)

  • 이병하;백정명
    • 조명전기설비학회논문지
    • /
    • 제22권2호
    • /
    • pp.148-154
    • /
    • 2008
  • 송전용량산정은 최근에 많은 전력회사에서 중요한 문제로 부각되어 왔다. 한전 시스템의 경우 전체송전용량은 주로 전압 안정도에 의해 제한을 받고 있으며, 전체송전용량 산정을 위하여서는 수많은 상정사고들에 대해서 분석하여야 한다. 따라서 전체송전용량 결정을 위한 전압안정도 측면에서의 상정사고를 효과적으로 선정하는 기법이 절실히 요청되고 있으며, 본 논문에서는 전체송전용량 결정을 위한 전압안정도 측면에서의 상정사고를 효과적으로 선정하는 새로운 상정사고 선정지수를 제시한다. 그리고 이 전체송전용량 결정을 위한 전압안정도 측면에서의 상정사고 선정지수의 효율성을 검증하기 위해 이 지수를 한전의 실계통에 적용하고 PSS/E 패키지와 개발한 IPLAN 프로그램을 사용하여 이 지수의 상정사고 선정에 대한 효용성이 분석된다.

전력계통의 TTC(Total Transfer Capability) 산정을 위한 수송능력평가 프로그램 향상 (Enhancement Power System Transfer Capability Program (PSTCP) To Calculate Total Transfer Capability in Power Systems)

  • 김상암;이병준;송길영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 C
    • /
    • pp.1514-1516
    • /
    • 1999
  • This paper presents a sequential framework that calculates the total transfer capabilities of power transmission systems. The proposed algorithm enhances the Power System Transfer Capability Program (PSTCP) in conjunction with the Continuation Power Flow(CPF) that is used for steady-state voltage stability analysis and modified Arnoldi-Chebyshev method that calculates rightmost eigenvalues for small signal stability analysis. The proposed algorithm is applied to IEEE 39-bus test system to calculate TTC.

  • PDF

전력산업 구조개편에 대비한 적정 TRM 및 ATC 결정에 관한 연구 (A Study of TRM and ATC Determination for Electricity Market Restructuring)

  • 이효상;최진규;신동준;김진오
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.129-134
    • /
    • 2004
  • The Available Transfer Capability (ATC) is defined as the measure of the transfer capability remaining in the physical transmission network for further commercial activity above already committed uses. The ATC determination s related with Total Transfer Capability (TTC) and two reliability margins-Transmission Reliability Capability (TRM) and Capacity Benefit Margin(CBM) The TRM is the component of ATC that accounts for uncertainties and safety margins. Also the TRM is the amount of transmission capability necessary to ensure that the interconnected network is secure under a reasonable range of uncertainties in system conditions. The CBM is the translation of generator capacity reserve margin determined by the Load Serving Entities. This paper describes a method for determining the TTC and TRM to calculate the ATC in the Bulk power system (HL II). TTC and TRM are calculated using Power Transfer Distribution Factor (PTDF). PTDF is implemented to find generation quantifies without violating system security and to identify the most limiting facilities in determining the network’s TTC. Reactive power is also considered to more accurate TTC calculation. TRM is calculated by alternative cases. CBM is calculated by LOLE. This paper compares ATC and TRM using suggested PTDF with using CPF. The method is illustrated using the IEEE 24 bus RTS (MRTS) in case study.

실시간 기상상태를 고려한 가용송전용량 산정 (Assessment of Available Transfer Capability (ATC) considering Real-time Weather Conditions)

  • 김동민;배인수;김진오
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.485-491
    • /
    • 2010
  • Total Transfer Capability (TTC) should be pre-determined in order to estimate Available Transfer Capability (ATC). Typically, TTC is determined by considering three categories; voltage, stability and thermal limits. Among these, thermal limits are treated mainly in this paper on the evaluation of TTC due to the relatively short transmission line length of Korea Electric Power Corporation (KEPCO) system. This paper presents a new approach to evaluate the TTC using the Dynamic Line Rating (DLR) for the thermal limit. Since the approach includes not only traditional electrical constraints but also real-time environmental constraints, this paper obtains more cost-effective and exact results. A case study using KEPCO system confirms that the proposed method is useful for real-time operation and the planning of the electricity market.

연계계통에서 가용송전용량 평가를 위한 최적화 알고리즘의 비교 (Comparison of Optimization Algorithms for Available Transfer Capability Assessment in Interconnected Systems)

  • 김규호;송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권12호
    • /
    • pp.549-554
    • /
    • 2006
  • Available transfer capability(ATC) is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading in power transaction activities. This paper deals with an application of optimization technique for available transfer capability(ATC) calculation and analyzes the results of ATC by considering several constraints. Especially several optimization techniques are used to solve the ATC problem with state-steady security constraints. The results are compared with that of repeat power flow(RPF), sequential quadratic programming(SQP) and linear programming(LP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

과도 안정도를 고려한 총 송전용량 평가 (Assessment of Total Transfer Capability Considering Transient Stability)

  • 박진욱;배인수;김진오;김규호
    • 조명전기설비학회논문지
    • /
    • 제19권7호
    • /
    • pp.94-99
    • /
    • 2005
  • 본 논문은 기존의 총 송전용량 결정에 있어서 고려하기 어려웠던 과도 안정도 제약을 판별법을 적용하기 위해 2단계 계산 기법을 이용하여 보다 용이하게 적용하였다. 총 송전용량을 계산하기 위한 방법으로 첫 번째 단계에서는 RPF(Repeated Power Flow) 방법을 이용하여 전압과 열적한계를 판별하고, 두 번째 단계에서는 첫 번째 단계에서 결정된 총 송전용량이 시스템의 과도 안정도 조건의 위반여부를 판별하여 시스템의 총 송전용량을 결정하였다.