• Title/Summary/Keyword: track slip

Search Result 48, Processing Time 0.025 seconds

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Assessment of Slip Sinkage of an Off-Road Tracked Vehicle from Model Track Experiments (모형궤도시험을 통한 야지궤도차량의 슬립침하 평가)

  • Baek, Sung-Ha;Shin, Gyu-Beom;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.6
    • /
    • pp.49-59
    • /
    • 2018
  • When a tracked vehicle travels off-road, shearing action and ground sinkage occur on the soil-track interface and severely affect tractive performance of the tracked vehicle. Especially, the ground sinkage, which is induced by vehicle's weight (hereinafter referred to as static sinkage) and longitudinal forces in the direction of travel producing slip (hereinafter referred to as slip sinkage), develops soil resistance, directly restricting the tractive performance of an off-road tracked vehicle. Thus, to assess the tractive performance of an off-road tracked vehicle, it is imperative to take both of static sinkage and slip sinkage into consideration. In this research, a series of model track experiments was conducted to investigate the slip sinkage which has not been clarified. Experiment results showed that the slip sinkage increased with increasing the slip ratio, but the increasing rate gradually decreased. Also, the slip sinkage was found to increase as relative density of soil decreased and imposed vertical load increased. From the experiment results, the normalized slip sinkage defined as slip sinkage to static sinkage calculated in the identical condition was investigated, and an empirical equation for the slip sinkage was developed in terms of slip ratio, which allows vehicle operators to predict the slip sinkage in a given soil and operating conditions.

Estimation of longitudinal velocity noise for rail wheelset adhesion and error level

  • Soomro, Zulfiqar Ali
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.3
    • /
    • pp.261-270
    • /
    • 2016
  • The longitudinal velocity (forward speed) having significant importance in proper running of railway wheelset on track, depends greatly upon the adhesion ratio and creep analysis by implementation of suitable dynamic system on contamination. The wet track condition causes slip and slide of vehicle on railway tracking, whereas high speed may also increase slip and skidding to severe wear and deterioration of mechanical parts. The basic aim of this research is to design appropriate model aimed estimator that can be used to control railway vehicle forward velocity to avoid slip. For the filtration of disturbance procured during running of vehicle, the kalman filter is applied to estimate the actual signal on preferered samples of creep co-efficient for observing the applied attitude of noise. Thus error level is detected on higher and lower co-efficient of creep to analyze adhesion to avoid slip and sliding. The skidding is usually occurred due to higher forward speed owing to procured disturbance. This paper guides to minimize the noise and error based upon creep coefficient.

A Study on Dynamic Modeling for Underwater Tracked Vehicle (트랙기반 수중건설로봇의 운동 모델링에 관한 연구)

  • Choi, Dong-Ho;Lee, Young-Jin;Hong, Sung-Min;Vu, Mai The;Choi, Hyeung-Sik;Kim, Joon-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.386-391
    • /
    • 2015
  • The mobility of tracked vehicles is mainly influenced by the interaction between the tracks and soil. When the track of a tracked vehicle rotates, there will be a slip effect between the track and the soil, which creates a track shear force and the vehicle’s driving force. In this paper, the modeling of a working tool such as a trenching cutter and a tracked vehicle that is the lower frame of a track-based operating robot was performed. In addition, a numerical simulation was executed to verify the performance of the design objectives and the motion characteristics of the combined system.

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

Effect of Initial Track Tension on the Tractive Performance of Tracked Vehicles (궤도의 초기 장력이 궤도 차량의 견인 성능에 미치는 영향)

  • 김채주;김경욱
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.1-12
    • /
    • 1997
  • A computer program was developed to simulate effect of the initial track tension on the tractive performance of tracked vehicles. The performance was evaluated in terms of drawbar pull, motion resistance, tractive coefficient and tractive efficiency. Results of the simulation showed that increase in track tension decreases the sinkage and mean maximum pressure in clay, making the ground pressure distribution more uniform. This tendency became more evident when the number of roadwheels increased. However, such change in MMPs was negligible in firm soils. Motion resistance was also decreased with increase in track tension and the number of roadwheels. Under weak soil conditions, tractive coefficient and efficiency increased generally as the track tension increased for a slip range of 10∼30%. For slippage less than 3∼4%, however, the tractive coefficient decreased with increase in track tension. In general, it was known that increasing track tension improves tractive performance in weak soil conditions. However, high track tension can reduce efficiency due to the increment of internal motion resistance caused by increased track tension.

  • PDF

Estimation of MineRo's Kinematic Parameters for Underwater Navigation Algorithm (수중항법 알고리즘을 위한 미내로 운동학 파라미터 예측)

  • Yeu, Tae-Kyeong;Yoon, Suk-Min;Park, Soung-Jea;Hong, Sup;Choi, Jong-Su;Kim, Hyung-Woo;Kim, Dae-Won;Lee, Chang-Ho
    • Ocean and Polar Research
    • /
    • v.33 no.1
    • /
    • pp.69-76
    • /
    • 2011
  • A test miner named MineRo was constructed for the purpose of shallow water test of mining performance. In June of 2009, the performance test was conducted in depth of 100 m, 5 km away from Hupo-port (Korean East Sea), to assess if the developed system is able to collect and lift manganese nodules from seafloor. In August of 2010, in-situ test of automatic path tracking control of MineRo was performed in depth of 120 m at the same site. For path tracking control, a localization algorithm determining MineRo's position on seabed is prerequisite. This study proposes an improved underwater navigation algorithm through estimation of MineRo's kinematic parameters. In general, the kinematic parameters such as track slips and slip angle are indirectly calculated using the position data from USBL (Ultra-Short Base Line) system and heading data from gyro sensors. However, the obtained data values are likely to be different from the real values, primarily due to the random noise of position data. The aim of this study is to enhance the reliability of the algorithm by measuring kinematic parameters, track slips and slip angle.

ABS Sliding Mode Control considering Optimum Road Friction Force of Tyre (타이어의 최적 노면 마찰력을 고려한 ABS 슬라이딩 모드 제어)

  • Kim, Jungsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.78-85
    • /
    • 2013
  • This paper presents the sliding mode control methods for anti-lock brake system (ABS) with the friction force observer. Using a simplified quarter car model, the sliding mode controller for ABS is designed to track the desired wheel slip ratio. Here, new method to find the desired wheel slip ratio which produces the maximum friction force between road and tire is suggested. The desired wheel slip ratio is varying according road and tire conditions to produce maximum friction force. In order to find optimum desired wheel slip ratio, the sliding mode observer for friction force is used. The proposed sliding mode controller with observer is evaluated in simulation, and the control design is shown to have high performance on roads with constant and varying adhesion coefficients.

Design of Electronic Parking Brake Control Simulator for Emergency Vehicle Braking (차량 비상제동을 위한 전자식 주차 브레이크 제어 시뮬레이터 설계)

  • Park, Jaeeun;Im, Changhyon;Kim, Taesung;Kim, Youngkeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2017
  • In this paper, a simulator hardware and control design for an electronic parking brake (EPB) are proposed for emergency vehicle braking when the hydraulic break and anti-lock brake systems (ABS) fail to function. EPB systems are designed specifically for park braking and are usually installed on the rear wheels. However, in an emergency situation when all vehicle brake systems fail, the EPB can be utilized to stop the vehicle and track the target slip ratio as the ABS. This paper analyzed the non-linear EBP of the type of motor on caliper (MoC) based on experiments. A simulator hardware is also designed to validate the performance of the designed EPB controller in terms of braking distance and performance in tracking the target slip ratio. Through the experimental analysis, it is confirmed that a sliding mode controller can be applied on a non-linear EPB to track the target slip ratio.

P-S Characteristics for End-bearing Pile in Granular Material (사질토 지반에서 선단지지말뚝의 P-S 특성)

  • Lee Yong Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.85-91
    • /
    • 2005
  • This paper investigates P-S (load-settlement) relationship for the end-bearing Pile in granular material using the CRISP FE Program with the laboratory 2D model pile load test. In order to simulate the effect of end-bearing pile problem in the FEA, the author adopts several forms of slip element around the pile length and the pile tip. Through this study it was found that e degree of non-associated Plastic flow rule incoporated into the Mohr-Coulomb model for the end-bearing pile with the slip elements was a dominant factor in terms of numerical solution convergence. In contrast, the roller boundary used along the pile shaft showed a smooth convergence with respect to the degree of non-associated plastic flow rule.