• Title/Summary/Keyword: tractors

Search Result 196, Processing Time 0.023 seconds

Performance Trend of Korean-made Agricultural Tractors (국산 트랙터의 성능 변화)

  • Kim K. U.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.321-326
    • /
    • 2005
  • Tractor performance was analyzed using the data from 226 Korean-made and 107 imported tractors tested at the National Institute of Agricultural Engineering for the 25-year period from 1980 through 2004. The performance analysis included the specific volumetric fuel consumption (svfc), power per unit weight and traction coefficient evaluated from the viewpoint of PTO power level. No significant performance improvement has been made for the Korean-made tractors over the last 25 years. The average svfc for the maximum PTO power has increased by only $2.1\%$ from 1980 to 2004, resulting in 2.86 kW${\cdot}$h/L in 2004. The average maximum PTO and drawbar power per unit weight of ballasted tractors were 1.38 and 1.19 kW/kN in 2000-2004, indicating $14.0\%$ and $5.9\%$ decreases respectively from 1980 to 2004. The traction coefficient has increased by $23.1\%$ over the 25 years, resulting in 0.68 in the 2000-2004 period. Poor performance improvement was also observed from the imported tractors. In the 2000-2004 period, average svfc for the maximum PTO power, PTO power per unit ballasted weight, drawbar power per unit ballasted weight and traction coefficient of the imported tractors were respectively 3.0 kW${\cdot}$h/L, 1.34 kW/kN, 1.13 kW/kN and 0.68. PTO and drawbar power per unit weight were lower in imported tractors than the Korean-made tractors. Comparing the test results with those of tractors less than 37 kW tested at the Nebraska Tractor Test Laboratory from 1981 to 2002, the Korean-made tractors have exhibited better performance in terms of power per unit weight. However, poor performance in the svfc and traction coefficient was observed. The average svfc and traction coefficient of the Korean-made tractors were respectively $86.4\%$ and $83.7\%$ of the tractors tested at the NTTL over the same period.

A Study on the RTLS based Dynamic Planning of Yard Tractors in Container Terminals

  • Lee, Seok-Yong;Lee, Chul-Ho
    • Journal of Navigation and Port Research
    • /
    • v.31 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • The competitiveness of container terminals hinges on minimizing the time vessels spend in port and on schedule services. Many previous researches on container terminals have tried to optimize the equipment allocation plan and to improve the activity of resources. Nevertheless, there have been few researches conducted on yard tractors, which move containers between the quay and the yard. The aim of this study is to propose the use of Real Time Location Systems (RTLS) based Dynamic Planning for yard tractors. Only RFID (Radio Frequency Identification) tags, which are attached to yard tractors, are able to support RTLS implementation. The system can provide real time job ordering in terms of load balancing using the information on location, in regards to the movement of yard tractors. This study will present the practical feasibility of RTLS, which can ultimately reduce the congestion of Hot Queues in container terminals. As a result, container terminals can be more productive and competitive. In order to accomplish the purpose of this study, we examined previous studies on the competitiveness of container terminals and summarized the potential of RTLS using RFID. In addition, we identified the role of yard tractors and proposed the two rules of Dynamic Planning for the yard tractors. We then fulfilled computational experiments on how yard tractors carrying containers by RTLS ordering Finally, the benefits and the implications of this study are discussed.

The Development of Walking Tractors for Asian Agriculture

  • Phongsupasamit, Surin;Sakai, Jun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1102-1109
    • /
    • 1993
  • This paper describes the research and development of Walking Tractors and Tillage Implements for Phase I (1991-1992) . The project consists of : (1) the study and need for the development of the walking tractors for Thailand and other Southeast Asian countries ; (2) the comparison in the use of the walking tractors and their transmission systems that are made in Thailand and aborad : and (3) the design of future walking tractors for Asian farmers in developing countries. The design of the walking tractors is concentrated to provide the ease to farmers, especially the elderly and female which will play an important role in the future agriculture of Thailand due to the lack of manpower. In addition , the design of the walking tractors is also aiming for small-scale farmers, the majority that have limited land capital. The walking tractors consist of several components but the most important one is the " Transmission System" . Thus, the research is concentrated in the devel pment an design of the a new transmission system. The new machine , currently developed, is named after the Chulalongkron University as " Chular Walking Tractor " , model SPJS -60. The tractor uses a 6-7 horsepower diesel engine with three forward gears and one reverse gear. The tractor also uses the latest gearing technology so called planetary gearing system with steering clutches system that never been used in any earlier model. The advantages of the planetary gearing system are : (1) the final drive gear can be small, and can be designed to provide higher strength with less wearing resistance, (2) the system eliminates a shaft which is used in other systems, thus reduces the weight and the manufacturing cost . Furthermore, the Chular Walking Tractor has an additional power take off shaft that can be used or linked with other standard agricultural implements.

  • PDF

Pre-processing of load data of agricultural tractors during major field operations

  • Ryu, Myong-Jin;Kabir, Md. Shaha Nur;Choo, Youn-Kug;Chung, Sun-Ok;Kim, Yong-Joo;Ha, Jong-Kyou;Lee, Kyeong-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Development of highly efficient and energy-saving tractors has been one of the issues in agricultural machinery. For design of such tractors, measurement and analysis of load on major power transmission parts of the tractors are the most important pre-requisite tasks. Objective of this study was to perform pre-processing procedures before effective analysis of load data of agricultural tractors (30, 75, and 82 kW) during major field operations such as plow tillage, rotary tillage, baling, bale wrapping, and to select the suitable pre-processing method for the analysis. A load measurement systems, equipped in the tractors, were consisted of strain-gauge, encoder, hydraulic pressure, and radar speed sensors to measure torque and rotational speed levels of transmission input shaft, PTO shaft, and driving axle shafts, pressure of the hydraulic inlet line, and travel speed, respectively. The entire sensor data were collected at a 200-Hz rate. Plow tillage, rotary tillage, baling, wrapping, and loader operations were selected as major field operations of agricultural tractors. Same or different farm works and driving levels were set differently for each of the load measuring experiment. Before load data analysis, pre-processing procedures such as outlier removal, low-pass filtering, and data division were performed. Data beyond the scope of the measuring range of the sensors and the operating range of the power transmission parts were removed. Considering engine and PTO rotational speeds, frequency components greater than 90, 60, and 60 Hz cut off frequencies were low-pass filtered for plow tillage, rotary tillage, and baler operations, respectively. Measured load data were divided into five parts: driving, working, implement up, implement down, and turning. Results of the study would provide useful information for load characteristics of tractors on major field operations.

Analysis of Operation Status for Agricultural Tractors Over 75 kW (75 kW 이상 농용트랙터 작업실태 분석)

  • Han, Deuk-Hee;Kang, Sung-Il;Yoo, Soo-Nan;Suh, Sang-Ryong;Choi, Young-Soo;Kang, Young-Seon;Park, Seung-Je
    • Journal of Biosystems Engineering
    • /
    • v.36 no.6
    • /
    • pp.397-406
    • /
    • 2011
  • In this study, surveys on operation status of the 73 tractors with rated power of over 75 kW from six provinces in Korea were performed to obtain basic data required for development and efficient use of the high-power and high-performance tractors. And types of tractors and implements, operation crops, types of operations, annual operation areas, annual operation days, annual operation hours, operation speeds and widths, and problems and improvements in use were investigated. Most (91.7%) of the tractor surveyed were operated for forage and silage crops such as rice straw, whole barley, rye grass, reed canary grass, sudan grass, and the remains were operated for upland crops such as ginseng, sweet potato, potato, chinese cabbage, radish. Main operations of the tractors were cutting, baling, and wrapping for forage crops, plow tillage, rotary tillage, and manure spreading. About half (47.9%) of the tractors were used exclusively for forage crop harvesting such as forage crop cutting, forage baling, and bale wrapping, 24.5% of the tractors were used exclusively for plow or rotary tillage, and 27.4% of the tractors were used for both forage crop harvesting, and plow or rotary tillage. For the tractors with power ranges of 75~83, 89~94, 98~101, 113, 124 kW, average annual operation areas per tractor for plow tillage, rotary tillage, forage crop harvesting (cutting, baling, wrapping), and manure spreading operations were analyzed as 112.6. 144.8, 158.9. 390.0. 215.6 ha, respectively. and total average annual operation area per tractor was 171.3 ha. Average annual operation days per tractor for those operations were analyzed as 24.1, 28.9, 38.3, 55.4, 33.4, respectively, and total average annual operation days per tractor was 33.6. Average annual operation hours per tractor for them were analyzed as 260.0, 321.6, 408.1, 664.8, 413.8, respectively, and total average annual operation hours per tractor for the all tractors was 377.1. Ranges of operation widths of plow tillage, rotary tillage, forage crop cutting, forage baling, bale wrapping, and manure spreading operations were shown as 1.5~2.6, 2.3~3.0, 1.8~3.2, 1.8~2.0, 1.8~2.3, 3.1~6.6 m, respectively. Ranges of operation speed of plow tillage, rotary tillage, forage crop cutting, forage baling, bale wrapping, and manure spreading were shown as 6~9, 4~11, 9~16, 8~15, 8~17, 12~16 km/h, respectively.

Evaluation of Environmental Comfort of Tractor Cabs (트랙터 안전캡의 환경 쾌적성 평가)

  • Hwang, Ki-Young;Kim, Kyeong-Uk
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • In order to evaluate environmental comfort of tractor cabs, temperature, relative humidity and noise within the cab were taken from 31 tractors during plowing and rotovating operations. The temperature and humidity were evaluated with regard to the comfort zone of KS B ISO 14269-2 and PMV of ISO 7730. The noise was evaluated with regard to the permissible sound level of OSHA for daily exposure of 8 hours. The collected data indicated that thermal environment of the cabs was out of the comfort zone, which meant tractor operators worked under uncomfortable thermal conditions. Difference in the thermal comfort by tractor power and maker, and type of works was not found. However, 25% of the studied tractors showed PMV in a range of -0.5 to +0.5, which indicated their operators worked under the comfort criteria. PMV was improved when the cab was air-conditioned. Levels of measured cab noise were lower than the permissible criteria, and 76.7% of the studied tractors had cab noise ranged from 75 to 85 dBA. There was a tendency that high powered tractors, rotovating operations and locally-made tractors had greater cab noise levels. However, their differences were insignificant.

Analysis of transportation problems with trailers and tractors (트레일러와 트렉터를 사용하는 하는 운송문제 분석)

  • Han Yun-Taek;Jang Su-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1-8
    • /
    • 2006
  • This paper considers an interesting transportation problem where trailers and tractors are involved in moving material. We identified a class of combinatorial optimization problems for minimizing the number of tractors and trailers required to accommodate the transportation needs. Then, we show that the fundamental problem is NP-hard and analyze its properties to develop efficient heuristic to handle the problem effectively.

  • PDF

Evaluation of Ride Vibration of Agricultural Tractors(I) - A Review of Ride Quality Evaluation Criteria - (농용 트랙터의 승차(乘車) 진동(振動) 평가에 관한 연구(I) - 승차 진동의 평가 기준에 관한 고찰 -)

  • Chung, S.S.;Moon, G.S.;Kim, K.U.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.4
    • /
    • pp.314-325
    • /
    • 1992
  • This paper reviews some relevant criteria for the evaluation of ride quality of agricultural tractors. Although there still exist many deficiences and shortcomings, ISO 2631 'Guide for the evaluation of human exposure to whole body vibration' may be the most pertinent criterion to the ride quality evaluation of tractors. The effects of ride vibrations on the human health and performance were also reviewed and summarized in general terms.

  • PDF

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

Characteristics of transmission efficiency in power driveline of agricultural tractors

  • I. H. Ryu;Kim, D. C.;Kim, K. U.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.132-138
    • /
    • 2000
  • Complex gear shifting and high speed-reduction ratio reduce the transmission efficiency in power driveline of agricultural tractors. According to a field test, the power transmission efficiency of a tractor in transporting operations was estimated about 70%. However, the actual efficiency was found by the experiment to fluctuate in a range of 56 to 87%. Therefore, the constant efficiency model commonly used for a simulation of power drivelines is not likely to simulate its performance more accurately. In order to predict power transmission efficiency more accurately, a new model was proposed and the new concepts of the maximum efficiency and sticking torque were introduced. The error mean between the measured and the predicted efficiencies was about 2.3% in mean. The new model reflecting the transmission characteristics in the power driveline of tractors could be used to analyze and predict the power transmission performance of tractors more accurately.

  • PDF