• Title/Summary/Keyword: trajectory tracking control

Search Result 515, Processing Time 0.027 seconds

A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller (모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어)

  • Kim, Seung-Woo;Seo, Ki-Sung;Cho, Young-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

A Linear Matrix Inequality Optima Control for the Tracking of an Autonomous Gliding Vehicle (자동 미끄럼 이동 로봇의 경로 추종을 위한 LMI 최적 제어 기법)

  • 이진우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.335-335
    • /
    • 2000
  • Applications such as unmanned aerial vehicles (UAVs), autonomous underwater vehicles (AUVs) and the time varying nature of their navigation, guidance and control systems motivate an integrated approach to trajectory general ion and trajectory tracking for autonomous vehicles. In this paper, an experimental testbed was designed for studying this integrated trajectory control approach. In this paper we apply the separating approach to an autonomous nonlinear vehicle system. A new linear matrix inequality based H$_{\infty}$ control technique for periodic time-varying systems is applied to the role of trajectory tracking. Trajectory general ion is accomplished by exploit ing the differential flatness property of the vehicle system; this at lows product ion of desired feasible nominal or reference trajectories from certain ″flat'system outputs. Simulation and experimental results are presented showing stable tracking of a periodic circular trajectory.

  • PDF

A Study on the Path Constraint Error Reducing Trajectory Planning (Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구)

  • Hwang, Seung-Jae;Park, Se-Woong;Kim, Dong-Jun;Kim, Kab-Il;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Robust Control of Trajectory Tracking for Hydraulic Excavator (유압 굴삭기의 궤적 추종을 위한 강인 제어)

  • 최종환;김승수;양순용;이진걸
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

Design of a Sliding Mode Control-Based Trajectory Tracking Controller for Marine Vehicles

  • Xu, Zhi-Zun;Kim, Heon-Hui;Park, Gyei-Kark;Nam, Taek-Kun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.87-96
    • /
    • 2018
  • A trajectory control system plays an important role in controlling motions of marine vehicle when a series of way points or a path is given. In this paper, a sliding mode control (SMC)-based trajectory tracking controller for marine vehicles is presented. A small-sized unmanned ship is considered as a control object. Both speed and heading angle of a ship should be controlled for tracking control. The common point of related researches was to separate ship's speed and heading angle in control methods. In this research, a new control law from a general sliding mode theory that can be applied to MIMO (multi input multi output) system is derived and both speed and heading angle of a ship can be controlled simultaneously. The propulsion force and rudder force are also applied in modeling stage to achieve accurate simulation. Disturbance induced by wind is also tackled in the dynamics considering robustness of the proposed control scheme. In the simulation, we employed a way-point method to generate ship's trajectory and applied the proposed control scheme to ship's trajectory tracking control. Our results confirmed that the tracking error was converged to zero, thus demonstrating the effectiveness of the proposed method.

Three-dimensional trajectory tracking for underactuated AUVs with bio-inspired velocity regulation

  • Zhou, Jiajia;Ye, Dingqi;Zhao, Junpeng;He, Dongxu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.282-293
    • /
    • 2018
  • This paper attempts to address the motion parameter skip problem associated with three-dimensional trajectory tracking of an underactuated Autonomous Underwater Vehicle (AUV) using backstepping-based control, due to the unsmoothness of tracking trajectory. Through kinematics concepts, a three-dimensional dynamic velocity regulation controller is derived. This controller makes use of the surge and angular velocity errors with bio-inspired models and backstepping techniques. It overcomes the frequently occurring problem of parameter skip at inflection point existing in backstepping tracking control method and increases system robustness. Moreover, the proposed method can effectively avoid the singularity problem in backstepping control of virtual velocity error. The control system is proved to be uniformly ultimately bounded using Lyapunov stability theory. Simulation results illustrate the effectiveness and efficiency of the developed controller, which can realize accurate three-dimensional trajectory tracking for an underactuated AUV with constant external disturbances.

Trajectory Tracking Control for a Robot Manipulator with Artificial Muscles (인공 고무 근욱을 이용한 로부트 매니퓨레이터의 궤도 추적 제어)

  • Jin, Sang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.485-492
    • /
    • 1994
  • Trajectory tracking control porblems are described for a two-link robot manipulator with artificial rubber muscle actuators. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with time-lag by the step response. Two control laws such as the feedforward and the computed torque control methods, are experimentally applied for controlling the circular trajectory of an actual robot mainpulator.

  • PDF

Implementation of a Direct Learning Control Law for the Trajectory Tracking Control of a Robot (로봇의 궤적추종제어를 위한 직접학습 제어법칙의 구현)

  • Kim, Jin-Hyoung;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.694-696
    • /
    • 2000
  • In this paper, the Direct Learning Control is applied to robot's trajectory tracking control to solve the problem that lies in the existing Iterative Learning Control(ILC) and the tracking Performance is analyzed and the better approach is searched using computer simulation and experiments. It is assumed that the Direct Learning Control(DLC) is saved onto memory basically after obtaining control input Profiles for several Periodic output trajectories using the ILC. In case the new output trajectory has special relations with the previous output trajectories, there is an advantage that the desired control input profile can be obtained without iterative executions only using the DLC. The robot's tracking control system is comprised of DSP chip. A/D converter, D/A converter and high-speed pulse counter included in the control board and the performance is examined by carrying out the tracking control for the given output trajectory.

  • PDF

A Robust Variable Structure Controller for the Mixed Tracking Control of Robot Manipulators (로봇 메니플레이터의 혼합 추적 제어를 위한 강인 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1908-1913
    • /
    • 2010
  • In this paper, a robust variable structure tracking controller is designed for the mixed tracking control of highly nonlinear rigid robot manipulators for the first time. The mixed control problem under consideration is extended from the basic tracking problem, with the different initial condition of both the planned trajectory and link of robots. This control problem in robotics is not addressed to until now. The tracking accuracy to the sliding trajectory after reaching is analyzed. The stability of the closed loop system is investigated in detail in Theorem 2. The results of Theorem 2 provide the stable condition for control gains. Combing the results of Theorem 1 and Theorem 2 gives rise to possibility of designing the improved variable structure tracking controller to guarantee the tracking error from the determined sliding trajectory within the prescribed accuracy after reaching. The usefulness of the algorithm has been demonstrated through simulation studies on the mixed tracking control of a two.link robot under parameter uncertainties and payload variations.

Robust Trajectory Tracking Control of Mecanum Wheeled AGV Using State Space Disturbance Observer Based Impedance Control and ISMC (상태 공간 외란관측기 기반의 임피던스 제어와 ISMC를 이용한 메카넘 휠 AGV의 강인 궤도 추적 제어)

  • Hyoseok Cheon;Seungkyu Park
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2023
  • Auto Guided Vehicle (AGV) equipped with mecanum wheels can move in all directions, unlike ordinary wheeled AGVs. In this paper, we propose a robust trejectory tracking control method for the mecanum wheeled AGVs in the presence of disturbances. It is constructed by combining impedance control with Integral Sliding Mode Control (ISMC), which shows robust performance against disturbances, and adding a disturbance observer (DOB) that estimates and removes disturbances. Simulation result using MATLAB/SIMULINK shows that the proposed control method has robust performance in tracking the reference trajectory under the circumstance with disturbance. The control performance is further improved when the disturbance observer is additionally used. In addition, the performance of the proposed control method was verified through experiment. It shows the result of tracking the set trajectory well.