• Title/Summary/Keyword: transcranial magnetic stimulation

Search Result 86, Processing Time 0.029 seconds

The Output Characteristics of Transcranial Magnetic Stimulation with Voltage Variable Capacitor-Charging System

  • Kim, Whi-Young
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.205-211
    • /
    • 2010
  • In this study, a Magnetic stimulation Pulse Train control technique is introduced and applied to Flyback converter operating in discontinuous conduction mode. In contrast to the conventional pulse width modulation control scheme, the principal idea of a Magnetic stimulation Pulse Train is to achieve output voltage regulation using high and low power pulses. The proposed technique is applicable to any converter operating in discontinuous conduction. However, this work mainly focuses on Flyback topology. In this paper, the main mathematical concept of the new control algorithm is introduced and simulations as well as experimental results are presented.

Transcranial Magnetic Stimulation using Cockroft-Walton Circuit and Half Bridge Resonant Inverter (코크로프트-월톤회로와 반파공진인버터를 적용한 경두개 자기자극장치)

  • Kim, Whi-Young;HwangBo, Gak
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.257-264
    • /
    • 2010
  • Though existent a transcranial magnetic stimulation makes various treatment and diagnostic sine waveform of fixed stimulation pulse, there is limitation. In this research, because strength, pulse width, pulse pattern required in treatment and diagnostic introduce other Cockroft-Walton circuit and half bridge inverter frequency and voltage variable become new device propose wish to. Have more advantages than existing device. First, do not have high voltage transformer. Second, switching loss can be less, and control output energy precisely. Three, stimulation strengths, pulse width, pulse pattern are various. As a result, sought special quality and an experiment that is improved applying inverter and cockroft - Walton circuit is half bridge inverter that do not use transformer.

Neurophysiological Evaluation of the Motor System Using Transcranial Magnetic Stimulation (뇌자기자극을 이용한 운동신경계의 신경생리학적 평가)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • Transcranial magnetic stimulation (TMS) is a non-invasive tool used to study aspects of human brain physiology, including motor function and the pathophysiology of various brain disorders. A brief electric current passed through a magnetic coil produces a high-intensity magnetic field, which can excite or inhibit the cerebral cortex. Although various brain regions can be evaluated by TMS, most studies have focused on the motor cortex where motor evoked potentials (MEPs) are produced. Single-pulse and paired-pulse TMS can be used to measure the excitability of the motor cortex via various parameters, while repetitive TMS induces cortical plasticity via long-term potentiation or long-term depression-like mechanisms. Therefore, TMS is useful in the evaluation of physiological mechanisms of various neurological diseases, including movement disorders and epilepsy. In addition, it has diagnostic utility in spinal cord diseases, amyotrophic lateral sclerosis and demyelinating diseases. The therapeutic effects of repetitive TMS on stroke, Parkinson disease and focal hand dystonia are limited since the duration and clinical benefits seem to be temporary. New TMS techniques, which may improve clinical utility, are being developed to enhance clinical utilities in various neurological diseases.

A Review on Effects of Non-Invasive Brain Stimulation in the Treatment of Sleep Disorders (수면장애에서 비침습적 뇌자극술의 치료 효과 고찰: 경두개자기자극술과 경두개직류전기자극술을 중심으로)

  • Kim, Shinhye;Lee, Suji;Lim, Soo Mee;Yoon, Sujung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.2
    • /
    • pp.53-69
    • /
    • 2021
  • Sleep disorders, increasingly prevalent in the general population, induce impairment in daytime functioning and other clinical problems. As changes in cortical excitability have been reported as potential pathophysiological mechanisms underlying sleep disorders, multiple studies have explored clinical effects of modulating cortical excitability through non-invasive brain stimulation in treating sleep disorders. In this study, we critically reviewed clinical studies using non-invasive brain stimulation, particularly transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS), for treatment of sleep disorders. Previous studies have reported inconsistent therapeutic effects of TMS and tDCS for various kinds of sleep disorders. Specifically, low-frequency repetitive TMS (rTMS) and cathodal tDCS, both of which exert an inhibitory effect on cortical excitability, have shown inconsistent therapeutic effects for insomnia. On the other hand, high-frequency rTMS and anodal tDCS, both of which facilitate cortical excitability, have improved the symptoms of hypersomnia. In studies of restless legs syndrome, high-frequency rTMS and anodal tDCS induced inconsistent therapeutic effects. Single TMS and rTMS have shown differential therapeutic effects for obstructive sleep apnea. These inconsistent findings indicate that the distinctive characteristics of each non-invasive brain stimulation method and specific pathophysiological mechanisms underlying particular sleep disorders should be considered in an integrated manner for treatment of various sleep disorders. Future studies are needed to provide optimized TMS and tDCS protocols for each sleep disorder, considering distinctive effects of non-invasive brain stimulation and pathophysiology of each sleep disorder.

Hemispheric Asymmetry of Plasticity in the Human Motor Cortex Induced by Paired Associative Stimulation (말초신경-피질 연계자극에 의해 유도되는 운동피질 가소성의 비대칭성)

  • Shin, Hae-Won;Sohn, Young-H.
    • Annals of Clinical Neurophysiology
    • /
    • v.13 no.1
    • /
    • pp.38-43
    • /
    • 2011
  • Background: In the brain, the dominant primary motor cortex (M1) has a greater hand representation area, shows more profuse horizontal connections, and shows a greater reduction in intracortical inhibition after hand exercise than does the non-dominant M1, suggesting a hemispheric asymmetry in M1 plasticity. Methods: We performed a transcranial magnetic stimulation (TMS) study to investigate the hemispheric asymmetry of paired associative stimulation (PAS)-induced M1 plasticity in 9 right-handed volunteers. Motor evoked potentials (MEPs) were measured in the abductor pollicis brevis (APB) muscles of both hands, and MEP recruitment curves were measured at different stimulation intensities, before and after PAS. Results: MEP recruitment curves were significantly enhanced in the dominant, but not the non-dominant M1. Conclusions: These results demonstrate that the dominant M1 has greater PAS-induced plasticity than does the non-dominant M1. This provides neurophysiological evidence for the asymmetrical performance of motor tasks related to handedness.

Numerical Analysis of Electric Field Distribution Induced Inside a Realistic Brain Model Considering Conductivity Heterogeneity (전기전도도의 비균질성을 고려한 정밀 두뇌 모형 내부에서 유기되는 유도 전기장 분포해석)

  • Kim, Dong-Hun;Lee, Il-Ho;Won, Chul-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.314-319
    • /
    • 2008
  • In this paper, the electric field distribution induced inside the brain during Transcranial Magnetic Stimulation(TMS) has been thoroughly investigated in terms of tissue heterogeneity and anisotropy as well as different head models. To achieve this, first, an elaborate head model consisting of seven major parts of the head has been built based on the Magnetic Resonance(MR) image data. Then the Finite Element Method(FEM) has been used to evaluate the electric field distribution under different head models or three different conductivity conditions when the head model has been exposed to a time varying magnetic field achieved by utilizing the Figure-Of-Eight(FOE) stimulation coil. The results show that the magnitude as well as the distribution of the induced field is significantly affected by the degree of geometrical asymmetry of head models and conductivity conditions with respect to the center of the FOE coil.

Effects of Repetitive Transcranial Magnetic Stimulation on Enhancement of Cognitive Function in Focal Ischemic Stroke Rat Model (국소 허혈성 뇌졸중 모델 흰쥐의 인지기능에 반복경두개자기자극이 미치는 효과)

  • Lee, Jung-In;Kim, Gye-Yeop;Nam, Ki-Won;Lee, Dong-Woo;Kim, Ki-Do;Kim, Kyung-Yoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Purpose : This study is intended to examine the repetitive transcranial magnetic stimulation on cognitive function in the focal ischemic stroke rat model. Methods : This study selected 30 Sprague-Dawley rats of 8 weeks. The groups were divided into two groups and assigned 15 rats to each group. Control group: Non-treatment after injured by focal ischemic stroke; Experimental group: application of repetitive transcranial magnetic stimulation(0.1 Tesla, 25 Hz, 20 min/time, 2 times/day, 5 days/2 week) after injured by focal ischemic stroke. To assess the effect of rTMS, the passive avoidance test, spatial learning and memory ability test were analyzed at the pre, 1 day, $7^{th}$ day, $14^{th}$ day and immunohistochemistric response of BDNF were analyzed in the hippocampal dentate gyrus at $7^{th}$ day, $14^{th}$ day. Results : In passive avoidance test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In spatial learning and memory ability test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In immunohistochemistric response of BDNF in the hippocampal dentate gyrus, experimental groups was more increased than control group. Conclusion : These result suggest that improved cognitive function by repetitive transcranial magnetic stimulation after focal ischemic stroke is associated with dynamically altered expression of BDNF in hippocampal dentate gyrus and that is related with synaptic plasticity.

Neuromodulation for Insomnia Management (불면증 치료법으로서의 뉴로모듈레이션)

  • Yoon, Ho-Kyoung
    • Sleep Medicine and Psychophysiology
    • /
    • v.28 no.1
    • /
    • pp.2-5
    • /
    • 2021
  • Hyperarousal or increased brain excitability is thought to play a key role in the pathophysiology of insomnia. Neuromodulation techniques are emergent complementary therapies for insomnia and can improve sleep by modulating cortical excitability. A growing body of literature support the idea that neuromodulation can be effective in improving sleep or treating insomnia. Recent evidence has revealed that neuromodulation methods can improve objective and subjective sleep measures in individuals with insomnia, although effects vary according to protocol. Different mechanisms of action might explain the relative efficacy of neuromodulation techniques on sleep outcomes. Further research testing different stimulation parameters, replicating existing protocols, and adding standardized sleep-related outcomes could provide further evidence on the clinical utility of neuromodulation techniques.

Establishing EMG Measurement System for Measurement of Motor Nerve Response in Transcranial Magnetic Stimulation (경두개 자기자극 시 운동신경 유발응답 측정을 위한 근전도 측정 시스템 구축)

  • Lee, Geun-Yong;Kim, Su-Hwan;Jo, Jae-Hyun;Yoon, Se-Jin;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.413-418
    • /
    • 2019
  • Studies are now actively underway to confirm the degree of treatment and rehabilitation of patients with brain-related diseases (dementia, schizophrenia, depression, Parkinson's disease). Among them, Transcranial magnetic stimulation (TMS) is widely used in treatment because it is a technique that is used for noninvasive brain neuron control in patients with brain disorders. It can be seen that muscle fatigue of normal people increases during Transcranial magnetic stimulation. Therefore, in this paper, our purpose is to build an EMG measurement system to measure motor neuron-induced response during transcranial magnetic stimulation and We identify a motor-neutral response system using tendency in the RMS graph. As an experimental method, the Raw Data received through the surface EMG device and analyzed by RMS technique, after the contraction and relaxation movement of the biceps brachii. As a result of the experiment, we confirmed the trend of rising RMS graph, and it will can be used to determine the self-stimulation intensity for each individual in consideration of the data of the motor-neutral response.

Study on Change of Poly ADP Ribose Polymerase in the Rat with Thrombotic Stroke by Full Wave Cockroft Walton method's Transcranial Magnetic Stimulation

  • Kim, Whi-Young;Kim, Jun-Hyoung
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • This study examined the relationships between protein expression and Poly ADP ribose polymerase in brain cell death in brains damaged by thrombotic stroke and treated with the Full Wave- Cockroft Walton (FWCW) method of Transcranial Magnetic Stimulation (TMS). The two-way switching element for TMS drove a half-bridge inverter of the current resonance of direct current voltage (+) and direct current voltage (-), and the experiment was conducted by stimulating the mice with thrombotic stroke through a range of pulses. Thrombotic stroke was caused of ligation of the common carotid artery of male SD mice, and blood reperfusion was conducted five minutes later. Protein expression was examined in immune reaction cells, which reacted to an antibody to Poly ADP ribose polymerase in the cerebrum cells, and western blotting. Observations of the PARP changes after thrombotic stroke showed that the number of Poly ADP ribose polymerase reactions were significantly lower (p < 0.05) in the group treated with TMS of the FWCW than the group with thrombotic stroke 24 hours after its onset. The application of FWCW-TMS helped prevent the necrosis of nerve cells and might prevent the brain damage that occurs as a result of thrombotic stroke, and improve the function recovery and disorder of brain cells.