• Title/Summary/Keyword: transformation temperature

Search Result 1,016, Processing Time 0.028 seconds

Phase Transformation Behavior on Aging Treatment in CuAINi Shape Memory Alloy (CuAINi 형상기억합금의 시효처리에 따른 상변태 거동)

  • Yang, G.S.;Kang, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.213-222
    • /
    • 1993
  • This research was performed to investigate the transformation behavior and shape memory effect of Cu-13.5Al-4.5Ni(wt%) alloy with various aging temperature and time. The results obtained in this study are as follows: Transformation temperature was very increased when aging temperature is at $250^{\circ}C$. The variation of transformation temperature in first reverse transformation cycle and second was very significant, but there was little difference in case of 2nd and 3rd. Transformation temperature at various aging temperature was increased with increasing of aging temperature and time. Microvickers hardness was increased with increasing of aging temperature and time. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by aging of long time at high temperature.

  • PDF

Kinetics of Athermal Martensitic Transformation in Yttria Doped Zirconia

  • Pee, Jae-Hwan;Choi, Eui-Seok;Hayakawa, Motozo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.11 s.282
    • /
    • pp.718-721
    • /
    • 2005
  • The high temperature tetragonal phase of zirconia containing $1.40{\~}1.60\;mol\%$ of yttria can be fully retained at room temperature by rapid cooling. The metastable tetragonal phase transforms into the monoclinic phase athermally upon subzero cooling. The transformation exhibited an athermal burst transformation. The effects of yttria content and grain size on the athermal martensitic transformation were studied in detail. The burst temperature linearly decreased with increasing yttria content or decreasing grain size. To consider the distribution of martensite nuclei, the Weibull modulus of the athermal martensitic transformation was evaluated from the distribution of the burst transformation temperature. From the Weibull analysis, the distribution of embryos appears to be more homogeneous than that of the defects responsible for the fracture of similar material.

Characteristics of Heat Generation during Transormation in Carbon Steels (일반탄소강의 상변태 중 발열 특성 해석)

  • 한흥남
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.196-201
    • /
    • 2000
  • A thermodynamic model was developed to analyze the characteristics of the heat generation during transformation of austenite in 0.186wt% and 0.458 wt%. carbon steels. The heat capacity and the heat evolved during transformation were formulated as functions of temperature and chemical composition for ferrite bainite and pearlite. in addition using the transformation dilatometer the transformation heat evolved during cooling was measured and the transformation behavior was observed. It was found that the heat capacity of ferrite was similar to those of pearlite and bainite. The heat capacity of ferrite was greater than that of bainite which was greater than that of pearlite. The molar heat of transformation to pearlite was greater than that to bainite which was greater than that to ferrite. The heats were found to be increased with decreased temperature and increasing the carbon content, It was also observed that the thermodynamic model. The heat of transformation in the higher carbon steel was greater than that in the lower carbon one. This was attributed to the lower transformation temperature and the greater amount of transformed pearlite in the higher carbon steel.

  • PDF

Microstructure and Phase Stability of $\beta$-Dicalcium Silicate ($\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화)

  • 박춘근
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

Study on the Martensitic Transformation Temperature and Morphology in Fe-27%Ni-0.27%C Alloy (Fe-27%Ni-0.27%C 합금의 마르텐사이트 변태온도와 형태에 관한 연구)

  • Shon, In-Jin;Kim, Hwan-Cheol;Kim, Hak-Shin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.3
    • /
    • pp.198-204
    • /
    • 1996
  • This work was carried out in order to investigate the effect of grain size on martensitic transformation temperature and morphology of Fe-27%Ni-0.27%C alloy. The martensitic transformation temperature was raised with increasing the austenitizing temperature within the range from $750^{\circ}C$ to $1200^{\circ}C$, owing to the grain growth, vacancy concentration. It was observed that the larger was the austenite grain, the higher was the martensitic transformation temperature. The influence of the austenite grain size was similar to that of the austenitizing temperature. The morphology of martensite in Fe-27%Ni-0.27%C alloy changed from lath to lenticular with the variation of grain size. From the above results, it was concluded that the martensitic transformation temperature and morphology was mainly dependent upon the austenite grain size.

  • PDF

Heat Distribution Analysis of an End-Quenching Process Considering Latent Heat of Transformation (변태잠열을 고려한 담금과정의 열전도 해석)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.79-84
    • /
    • 1998
  • It is very difficult to analyze the transient temperature distribution during quenching of the steel because of coupled effects among temperature, structures and stresses. In this paper, using Inoue's equation of evolution and mixture rule, transient temperature distribution is calculated by the finite element method considering latent heat of transformation structure and temperature dependence of physical and mechanical prperties for the 0.45% carbon cylindrical steel bar with 40mm diameter and 20mm height during end-quenching.

  • PDF

On the distribution of temperature and metallic structures in quenching process considering latent heat of phase transformation (변태잠열을 고려한 담금시편의 온도 및 조직분포에 대하여)

  • 민수홍;구본권
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1984
  • The analysis of temperature distribution and change of metallic structures during water quench were presented by finite element method. In temperature calculation the equation of unsteady state hear conduction problem considering latent heat due to phase transformation was applied to finite solid cylinder, SM 45C of 40mm diameter and 40mm height. In metallic structure analysis iso-thermal transformation curve and the equations of evolution in pearlite-martensite transformation were applied. The calculated results upon temperature and metallic structures were agreed with those of experimental observations.

  • PDF

The Latent Heat of Phase Transformation of the Carbon Steel and the Calculation of Cooling Curves Including the Latent Heat in Quenching (탄소강 담금질시의 상변태열과 이를 포함한 냉각곡선의 계산)

  • 윤석훈;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.10-16
    • /
    • 1994
  • This study aimed at measuring the latent heat of phase transformation of S45C carbon steel in quenching and at conducting the analytical researches into the calculation of cooling curves including the latent heat. The temperature of phase transformation of steel and its latent heat are dependant upon the cooling rates at the temperature of A1 phase transformation point. The effect of the latent heat of phase transformation is especially manifest at the cooling curve of center of specimens. The higher the cooling rates became, the lower fell the temperature region of phase transformation. In the figures of cooling rates, the phenomena of cooling rate dropping into zero was caused by the latent heat of phase transformation.

  • PDF

Temperature and Property Control of High Strength Steel in Hot Strip Mills (열간압연 고강도강의 온도 및 재질제어)

  • Park, Cheol-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.817-823
    • /
    • 2011
  • This paper proposes a cooling stop temperature control(CST) and a phase transformation control(PTR) which aim at obtaining the uniform temperature and quality along the longitudinal direction of the high strength steel on the run-out table(ROT) process. The problems of the temperature control are analyzed for the conventional steel and the new control concepts are derived from a time-temperature transformation(TTT) diagram. The proposed control technologies are verified from the simulation results under the temperature prediction model by the heat transfer governing equation, and the temperature estimation simulator. It is shown through the field test of the hot strip mills that the phase transformation ratio of the high strength steel is considerably improved by the proposed temperature controls.

CSTC of High Strength Steel for ROT Process in Hot Strip Mills (열간압연 ROT에서 고강도강의 CSTC 개발)

  • Park, Cheol-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.191-196
    • /
    • 2008
  • This paper proposes a cooling stop temperature control(CSTC) concept which aims at obtaining the uniform temperature and quality of the material along the longitudinal and lateral direction of the strip. The CSTC is designed using the experimental CCT(Continuous Cooling Transformation), TTT(Time Temperature Transformation) curves and the temperature control model by the heat transfer governing equation, and the temperature control simulator. The cooling pattern and the rolling speed can be solved by the CSTC. It is shown through the field test of the hot strip mill of POSCO that the phase transformation ratio of the high carbon steel is considerably improved by the proposed temperature control.