• Title/Summary/Keyword: transgenic tobacco plant

Search Result 212, Processing Time 0.022 seconds

Responses to Infection of Tobacco Mosaic Virus Pepper Strain (TMV-P) in Transgenic Tobacco Plants Expressing the TMV-P Coat Protein or Its Antisense RNA (담배 모자이크 바이러스 고추계통(TMV-P)의 외피단백질 유전자를 도입한 형질전환 담배의 TMV-P에 대한 반응)

  • 최장경;홍은주;이재열;장무웅
    • Korean Journal Plant Pathology
    • /
    • v.11 no.4
    • /
    • pp.374-379
    • /
    • 1995
  • The cDNA of tobacco mosaic virus-pepper strain (TMV-P) coat protein (CP) genes were introduced into tobacco plants (Nicotiana tabacum cv. Samsun nn) using a binary Ti plasmid vector of Agrobacterium tumefaciens. these cDNAs introduced into tobacco plants were detected by polymerase chain reaction. Symptom development was distinctly suppressed in the transgenic plant introduced buy sense CP cDNA when the plant was inoculated with TMV-P, while in transgenic tobacco plants of antisense CP gene, symptom development was not suppressed as in non-transgenic plants. TMV-P concentration in the sense CP transgenic tobacco plant was decreased to 1/14 of the concentration in non-transgenic plants. Expression of the kanamycin resistance gene of these transgenic plants could be detected in the progeny.

  • PDF

Overexpression of Cotton Glutathione S-Transferase (GST) cDNA and Increase of low Temperature and Salt Tolerance in Plants

  • Kang, Won-Hee;Jong Hwa kim;Lim, Jung-Dae;Yu, Chang-Yeon
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.117-122
    • /
    • 2002
  • Cotton Glutathione S-Transferase(GST: EC 2.5.1.18) was cloned and Gh-5 cDNA was overexpressed in tobacco (Nicotiana tabacum) plants. The transformation of cotton GST in tobacco plant was confirmed by northern blot analysis. Type I and Type II transcript patterns were identified in Gh-5 transgenic tobacco plants. Type I transcripts was only discussed in this paper. Glutathione and 1-chloro-2,4-dinitrobenzene (CDNB) were used as the substrates, and the activity of GST in the type I transgenic plants was about 2.5-fold higher than the non-expressers and wild type tobacco plants. The expression of cotton GST in tobacco plants proved that Gh-5 could be translated into functional protein. Type I transgenic plants produced functional GST in the cells. Type I showed higher GST specific activity than Type II in the transgenic plants. Control and transgenic seedlings were grown in the growth chamber and under the light at 15$^{\circ}C$, and the effects of cotton GST in the seedlings was evaluated. The growth rate of Gh-5 overexpressors was better than the control and non-transgenic tobacco plants. Salinity tolerance was also analyzed on the seeds of transgenic plants. Seeds of Gh-5 overexpressors and the wild type tobacco seedlings were germinated and grown at 0, 50, 100, 150, and 200 mM NaCl solution. Gh-5 transgenic seedlings showed higher growth rate over control seedlings at both 50 and 100 mM NaCl solution. But at 0, 150, and 200 mM NaCl concentration, the difference in growth rate was not detected.

Expression of Catalase (CAT) and Ascorbate Peroxidase (APX) in MuSI Transgenic Tobacco under Cadmium Stress

  • Kim, Kye-Hoon;Kim, Young-Nam;Lim, Ga-Hee;Lee, Mi-Na;Jung, Yoon-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.53-57
    • /
    • 2011
  • The MuSI is known as a multiple stress resistant gene with several lines. A previous study using RT-PCR showed that the expression of MuSI gene in tobacco plant induced its tolerance to Cd stress. This study was conducted to examine the enhanced Cd tolerance of the MuSI transgenic tobacco plant through germination test and to understand the role of the involved antioxidant enzymes for the exhibited tolerance. Germination rate of MuSI transgenic tobacco was more than 10% higher than that of wild-type tobacco, and seedlings of MuSI transgenic tobacco grew up to 1.6 times larger and greener than seedlings of wild-type tobacco at 200 and 300 ${\mu}M$ Cd. From the third to the fifth day, CAT activities at 100 and 200 ${\mu}M$ Cd and APX activities at 100, 200 and 300 ${\mu}M$ Cd of MuSI transgenic tobacco were up to two times higher than those of wild-type tobacco. MuSI gene is shown to enhance the activities of antioxidant enzymes resulting in higher tolerance to oxidative stress compared with the control plant.

Development of a Screening System for Plant Defense-Inducing Agent using Transgenic Tobacco Plant with PR-1a Promoter and GUS Gene

  • Oh, Sang-Keun;Lee, Seon-Woo;Kwon, Suk-Yoon;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.288-292
    • /
    • 2005
  • Pathogenesis-related protein-1a (PR-1a) is strongly induced in tobacco plants by pathogen attack, exogenous salicylic acid (SA) application and by other developmental processes. In order to develop a rapid screening system for the selection of plant defense-inducing compounds originated from various sources, we have transformed tobacco Samsun NN plants with a chimeric construct consisting of GUS $(\beta-glucuronidase)$. In the $T_1$ generation, three transgenic lines having stable GUS expression were selected for further promoter analysis. Using GUS histochemical assay, we observed strong GUS induction driven by PR-1a promoter in PR1a-GUS transgenic tobacco leaves in response to the exogenous application of SA or benzol (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester (BTH), a SA­derivative compound. In addition, GUS expression was maintained locally or systemically in PR1a-GUS transgenic line $\#5\;T_2$ generation) until after 3 days when they were treated with same chemicals. Our results suggested that the PR1a-GUS reporter gene system in tobacco plants may be applicable for the large-scale screening of defense-inducing substances.

Transgenic Tobacco Plants Introduced with cDNA of Cucumber Mosaic Virus Satellite RNA (오이 모자이크 바이러스 위성RNA의 cDNA가 도입된 형질전환 담배의 육성)

  • 이상용;홍은주;최장경
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.80-86
    • /
    • 1995
  • The cDNA of CMV-As satellite RNA was introduced into tobacco plants (Nicotiana tabacum cv. Samsun NN) using a binary Ti plasmid vector system of Agrobacterium tumefaciens. The cDNA of satellite RNA introduced into tobacco plants was detected by polymerase chain reaction (PCR) and molecular hybridization analyses. Symptom development was distinctly suppressed in the transgenic tobacco plants when inoculated with CMV-Co. CMV concentration in the transgenic tobacco plants was decreased to 1/40 of non-transgenic tobacco plants. The kanamycin resistance gene of the transgenic tobacco plants was also detected in the progeny.

  • PDF

D-amino Acid Oxidase (DAO) Gene as a Novel Selection Marker for Plant Transformation (새로운 선발 마커 D-아미노산 산화효소 유전자를 이용한 식물 형질전환)

  • Lim, Sun-Hyung;Woo, Hee-Jong;Lee, Si-Myung;Jin, Yong-Moon;Cho, Hyun-Suk
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • Though higher plants car not metabolize D-amino acid, many prokaryotes and eukaryotes have the D-amino acid metabolism. Therefore, we transformed tobacco plants with D-amino acid oxidase (DAO), which can metabolize D-amino acid, and confirmed that transgenic tobacco plants might metabolize D-amino acid. Transgenic tobacco plants were survived a high concentration of D-serine, however non-transgenic plants were not grown on D-serine medium. From Southern and Northern blot analysis, transgenic tobacco plants selected on D-serine medium were confirmed by insert and expression of transgene. $T_{1}$ tobacco seeds derived $T_{0}$ tobacco plants selfing were grown on D-serine medium and showed normal phenotype compared to wild tobacco plants. Transgenic tobacco plants displayed the metabolic capability of D-serine. Therefore, we suggested that DAO is useful selectable marker gene for plant transformation.

Resistance to Potato Virus Y Conferred by PVY Replicase Gene Sequence in Transgenic Burley Tobacco (감자바이러스 Y 복제 유전자로 형질전환된 버어리종 연초의 PVY에 대한 저항성 특성)

  • Young Ho Kim;Eun Kyung Park;Soon Yong Chae;Sang Seock Kim;Kyung-Hee Paek;Hye Sun Cho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • The complementary DNA (cDNA) of potato virus Y- vein necrosis strain (PVY-VN) replicase gene (Nlb) was transformed into tobacco (Nicotiana tabacum cv. Burley 21) plants. Out of 25 putative transformants regenerated, 3 were resistant to PVY-VN, one highly resistant plant with no symptom until seed harvest time and the other two with mild chlorotic spot symptoms at late stages after infection. No symptom was observed in the highly resistant plant, while mild vein necrotic symptoms were developed on suckers of the moderately resistant plants after seed harvest time, In the first generation (T1) via self fertilization, resistance to susceptibility frequency in transgenic plants from the highly resistant transformant was about 3 : 1, while it was lowered much (about 1:2 and 1:19) in T1 of the moderately resistant transformants. In the second generation (T2) of the highly resistant plant, resistance frequencies were similar to T1, but resistance levels varied greatly and appeared to be decreased. Key words : potato virus Y, viral replicate gene, transgenic tobacco plants, resistance.

  • PDF

Cloning of CAB cDNA encoding chlorophyll a/b binding protein of photosystem II in Korean ginseng and Use in Plant (고려인삼 광계 II Chlorophyll a/b binding Protein 유전자(CAB)의 cloning 및 식물에의 활용연구)

  • 김갑식;이기원;이종철;여운형;채순용;박은경
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.21 no.2
    • /
    • pp.152-159
    • /
    • 1999
  • A CAB cDNA clone(pKGCAB) encoding the light harvesting chlorophyll a/b binding protein of the semi-shade plant, Korean ginseng(Panax ginseng C. A. Meyer) was isolated by the one-way path random sequencing of ginseng cDNA library clones and transgenic tobacco plants(Nicotiana tabacum NC82) were produced by the transformation of this ginseng CAB gene in use of Agrobacterium tumefaciens LBA4404. The CAB gene showed type 1 structure of LHCP-II, 84% similarity in nucleotide sequence and 92% in amino acid sequence to that of Nicotiana tabacum CAB40, respectively. Seed germination and initial growth of the transgenic tobacco plants transformed with the cDNA fragment were accelerated under low light intensity compared with those of normal tobacco plant, that may result from the higher light sensitivity of the transgenic plants than that of the normal.

  • PDF

Physiological Response and Cadmium Accumulation of MuS1 Transgenic Tobacco Exposed to High Concentration of Cd in Soil: Implication to Phytoremediation of Metal Contaminated Soil (토양 중 고농도 카드뮴에 노출된 MuS1 형질전환 담배 (Nicotiana tabacum cv. Xanthi)의 생리적 반응 및 카드뮴 축적: 식물학적 오염토양정화를 위한 형질전환 식물 탐색)

  • Jeoung, Yoon-Hwa;Kim, Young-Nam;Kim, Kwon-Rae;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.1
    • /
    • pp.58-64
    • /
    • 2013
  • The objective of this study was to understand the physiological response and cadmium accumulation of MuS1 transgenic tobacco exposed to high concentration of Cd in soil. For this, a pot experiment was carried out in a greenhouse for a month, with two lines of MuS1 transgenic tobaccos (S4 and S6) and non-transgenic tobacco cultivated in the soils spiked at three different Cd concentrations (0, 60 and 180 mg $kg^{-1}$). Both transgenic and non-transgenic tobacco showed visible toxic symptoms such as chlorosis and leaf roll as treated concentration increased. The net photosynthetic rates of MuS1 plants (S4 and S6) exposed at 180 mg $kg^{-1}$ Cd were 6.3 and $7.7{\mu}mol\;m^{-2}s^{-1}$, being higher than those of the non-transgenic plant ($4.8{\mu}mol\;m^{-2}s^{-1}$). Values of stomatal conductance of MuS1 transgenic plants (0.05 and 0.008 mmol $H_2O\;m^{-2}s^{-1}$) were also higher than those of non-transgenic plant (0.03 mmol $H_2O\;m^{-2}s^{-1}$). In addition, fresh and dry weights of MuS1 transgenic plants were heavier than those of non-transgenic plant. Likewise, MuS1 transgenic plants appeared to be better physiological performance than non-transgenic tobacco when exposed at high concentration of Cd in soil. With regard to metal accumulation, MuS1 transgenic tobaccos accumulated more Cd in their roots than non-transgenic tobacco implying that MuS1 transgenic tobacco is suggested to be used for phytostabilization of heavy metals.

Increase in Linolenate Contents by Expression of the fad3 Gene in Transgenic Tobacco Plants

  • Kang, Young-Hwi;Min, Bok-Kee;Park, Hee-Sung;Lim, Kyung-Jun;Huh, Tae-Lin;Lee, Se-Yong
    • BMB Reports
    • /
    • v.29 no.4
    • /
    • pp.308-313
    • /
    • 1996
  • An 1.4 kb of the fad3 cDNA encoding microsomal linoleic acid desaturase catalyzing the conversion of linoleic acid (18:2, ${\omega}-6$) to linolenic acid (18:2, ${\omega}-3$) was introduced into tobacco plants by the Agrobacterium-mediated plant transformation, Among the transgenic tobacco plants conferring kanamycin resistance, five transformants showing increment in unsaturated fatty acid contents were selected and further analyzed for the transgenecity, In genomic Southern blot analyses, copy numbers of the integrated fad3 DNA in chromosomal DNA of the five transgenic tobacco plants were varied among the transgenic lines. By Northern blot analyses, the abundancy of the fad3 mRNA transcript directed by Cauliflower Mosaic Virus 35S promoter was consistent with the relative copy number of the fad3 DNA integrated in the chromosome of transgenic tobacco plants. When compared with the wild type, accumulation of linolenic acid in transgenic tobacco roots was elevated 3.7- to 4.7-fold showing a corresponding decrease in the linoleic acid contents; however, slight increments for linolenic acid were noticed in transgenic leaf tissues. These results indicated that the elevated level of fad3 expression is achieved in transgenic tobacco plants.

  • PDF