• 제목/요약/키워드: transglycosylation

검색결과 71건 처리시간 0.028초

생전분을 당공여체로 한 분쇄마찰매체 함유 효소반응계에서의 Stevioside의 당전이 반응 기작 (Reaction Mechanism of Transglycosylation of Stevioside in the Attrition Coupled Reaction System Using Raw Starch as a Glycosyl Donor)

  • 백승걸;박동찬;허태린;이용현
    • 한국미생물·생명공학회지
    • /
    • 제22권3호
    • /
    • pp.252-258
    • /
    • 1994
  • Transglycosylation of stevioside in the attrition coupled heterogeneous reaction system using raw starch as a glycosyl donor has significant advantages over conventional reaction systems using liquefied starch as a donor. The transglycosylation of stevioside under the presence of organic solvent showed that transglycosylation reaction occurs via two steps ; initially from raw starch to cyclodextrin(CD), and then followed by transglycosylation of produced CD. Comparison of the transglycosylation efficiency of c$\alpha $-, $\beta $, $\gamma $-CDs indicated that $\alpha $-, $\beta $-CD are mainly utilized as a glycosyl donor for following reaction. The reaction mechanism of transglycosylation between stevioside and CD proceeded according to random sequential bireactant mechanism. The equilibrium constant of transglycosylation reaction of cyclodextrin glucanotransferase wase also evaluated. The structure of transglycosylated stevioside was confirmed by TLC, and it was found that glycosyl group(G$_{1}, $ ~ G$_{4}$-glycosidic bond.

  • PDF

분쇄마찰매체 불균일상 효소반응계를 활용한 생전분을 당공여체로 하는 Cyclodextrin Glucanotransferase의 당전이 반응 (Transglycosylation Reaction of Cyclodextrin Glucanotransferase in the Attrition Coupled Reaction System using Raw Starch as a Donor)

  • 이용현;백승걸;박동찬;신현동
    • 한국미생물·생명공학회지
    • /
    • 제21권5호
    • /
    • pp.461-467
    • /
    • 1993
  • Transglycosylation reaction of cyclodextrin glucanotransferase (CGTase) was analyzed in the attrition coupled heterogeneous reaction system using raw starch as a donor` and mono-, di-saccharide, and glycoside as acceptors. For transglycosylation reaction of stevioside, the transglycosylation rate was similar and the transglycosylation yield was increased compare with conventional process using liquefied starch as the donor. Also the accumulation of maltooligosaccharides in reaction mixture was minimized.

  • PDF

전분으로부터 Amyloglucosidase의 당전이반응에 의한 배당체의 합성 (Synthesis of Glycoside by Transglycosylation of Amyloglucosidase from Starch.)

  • 박종이;이희정;이태호
    • 한국미생물·생명공학회지
    • /
    • 제26권2호
    • /
    • pp.187-194
    • /
    • 1998
  • 수계에서 전분 가수분해효소의 transglycosylation반응을 이용하여 배당체(glycoside)를 합성하였다. Glycosyl donor인 starch와 glycosyl acceptor인 benzylalcohol을 반응기질로 선택하였다. 시판되는 9종의 당가수분해효소의 transglycosylation활성을 조사한 결과 glucose와 한 종류의 glycoside만을 생산하는 amyloglucosidase(from Rhizopus sp.)를 반응효소로 선정하였다. Amyloglucosidase에 의해 합성된 배당체는 여러 가지 분석을 통해 glucose의 1번 OH기에 benzylalcohol이 ${alpha}$형태로 결합된 benzylalcohol-${alpha}$-glucoside(BG)임을 확인하였다. 수계에서 이 효소에 의한 transglycosylation 반응의 최적조건은 starch 50mg/$m\ell$, benzylalcohol 50 mg/ml, 온도 45$^{\circ}C$, 효소량 10 unit/ml, pH 5.0, 반응시간 32시간이었으며 합성된 BG는 amyloglucosidase에 의해서는 분해되지 않았고 ${alpha}$-glucosidase에 의해 glucose와 benzylalcohol로 가수분해되었다.

  • PDF

Modulation of the Regioselectivity of a Thermotoga neapolitana $\beta$-Glucosidase by Site-Directed Mutagenesis

  • Choi, Ki-Won;Park, Kyung-Min;Jun, So-Young;Park, Cheon-Seok;Park, Kwan-Hwa;Cha, Jae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.901-907
    • /
    • 2008
  • Thermotoga neapolitana $\beta$-glucosidase (BglA) was subjected to site-directed mutagenesis in an effort to increase its ability to synthesize arbutin derivatives by transglycosylation. The transglycosylation reaction of the wild-type enzyme displays major ${\beta}(1,6)$ and minor ${\beta}(1,3)$ or ${\beta}(1,4)$ regioselectivity. The three mutants, N291T, F412S, and N291T/F412S, increased the ratio of transglycosylation/hydrolysis compared with the wild-type enzyme when pNPG and arbutin were used as a substrate and an acceptor, respectively. N291T and N219T/F412S had transglycosylation/hydrolysis ratios about 3- and 8-fold higher, respectively, than that of the wild-type enzyme. This is due to the decreased hydrolytic activity of the mutant rather than increased transglycosylation activity. Interestingly, N291T showed altered regioselectivity, as well as increased transglycosylation products. TLC analysis of the transglycosylation products indicated that N291T retained its ${\beta}(1,3)$ regioselectivity, but lost its ${\beta}(1,4)$ and ${\beta}(1,6)$ regioselectivity. The altered regioselectivity of N291T using two other acceptors, esculin and salicin, was also confirmed by TLC. The major transglycosylation products of the wild type and N291T mutant were clearly different. This result suggests that Asn-291 is highly involved in the catalytic mechanism by controlling the transglycosylation reaction.

Transglycosylation of Permethylated Methyl D-Glycopyranosides in the Presence of Trimethylsilyl Trifluoromethanesulfonate

  • 이창귀;전정호;서영환
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권11호
    • /
    • pp.1233-1238
    • /
    • 1998
  • Transglycosylation reactions among methyl 2,3,4,6-tetra-O-methyl-D-glycopyranosides and isomeric butyl alcohols or cyclohexanol took place in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) in dichloromethane. The extent of the reaction after 1 h and 24 h from mixing was determined by gas chromatography (GC). Anomerization of the substrate took place during the course of transglycosylation, which favors α anomer regardless of the anomeric configurations of the starting glycosides. Transglycosylation also favors the a anomer regardless of the steric bulkiness of the alcohol. tert-Butyl alcohol did not give any transglycosylation, suggesting the steric hindrance of approaching the bulky alcohol to the oxonium intermediate. A mechanism for the transglycosylation have been proposed.

전분으로부터 α-amylase에 의한 배당체의 합성 (Synthesis of Glycosides by Transglycosylation of α-Amylase from Starch)

  • 박종이;이태호
    • 미생물학회지
    • /
    • 제34권3호
    • /
    • pp.137-143
    • /
    • 1998
  • 수계에서 전분 가수분해 효소의 transglycosylation 반응을 이용하여 배당체(glycoside)를 합성하였다. Glycosyl donor인 가용성전분과 glycosyl acceptor인 benzylalcohol을 기질로 하여 ${\alpha}$-amylase에 의해 합성되는 배당체는 glucose의 1번 OH기에 benzylalcohol이 ${\alpha}$형태로 결합한 benzylalcohol-${\alpha}$-glucoside(BG)와 benzylalcohol-${\alpha}$-maltoside(BM)이었다. pH 5.0의 반응에서는 주로 BG가, pH 8.0의 반응에서는 BM만이 합성되는 특이한 반응양상을 보였다. Transglycosylation 반응의 최적조건은 가용성전분 50 mg/ml, benzylalcohol 50 mg/ml, 온도 $30-35^{\circ}C$, 효소량 10 unit/ml이었으며, 합성된 BG는 ${\alpha}$-glucodisase에 의해 glucose와 benzylalcohol로 가수분해되었으며 BM의 경우는 pH 5.0에서는 glucose와 BG로 가수분해되었으나 pH 8.0이상에서는 전혀 분해되지 않았다. BM과 구조적으로 유사한 maltotriose는 pH 5.0에서 glucose와 maltose로 가수분해 되었으나 transglycosylation반응은 거의 일어나지 않았으며 pH 8.0에서는 가수분해도 transglycosylation반응도 일어나지 않았다.

  • PDF

Leuconostoc mesenteroides B512FMC/6HG8가 생산하는 Dextransucrase에 의한 Cellobiose의 당전이반응 (Transglycosylation Reaction on Cellobiose by Dextansucrase of Leuconostoc mesenteroides B512FMC/6HG8)

  • 강현록;양지영;이현규
    • 한국식품영양과학회지
    • /
    • 제29권5호
    • /
    • pp.802-806
    • /
    • 2000
  • Cellobiose에 당전이 효소인 dextransucrase를 여러 가지 조건별로 반응시켜 올리고당의 생성경향을 알아보았다. Cellobiose에 대한 acceptor 반응의 최적조건은 cellobiose와 surcose의 비율은 3:1, 효소의 양은 2 U/mL, buffer의 이온강도는 25 mM, pH는 5, 반응온도는 $25^{\circ}C$로 나타났다. Cellobiose의 acceptor products는 종합도 6까지 생성되었으며, 구조는 2-O-isomaltodextrinyl cellobiose로 추정하였다.

  • PDF

Modulation of Hydrolysis and Transglycosylation Activity of Thermus Maltogenic Amylase by Combinatorial Saturation Mutagenesis

  • Oh, Su-Won;Jang, Myoung-Uoon;Jeong, Chang-Ku;Kang, Hye-Jeong;Park, Jung-Mi;Kim, Tae-Jip
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권8호
    • /
    • pp.1401-1407
    • /
    • 2008
  • The roles of conserved amino acid residues (Va1329-Ala330-Asn331-Glu332), constituting an extra sugar-binding space (ESBS) of Thermus maltogenic amylase (ThMA), were investigated by combinatorial saturation mutagenesis. Various ThMA mutants were firstly screened on the basis of starch hydrolyzing activity and their enzymatic properties were characterized in detail. Most of the ThMA variants showed remarkable decreases in their hydrolyzing activity, but their specificity against various substrates could be altered by mutagenesis. Unexpectedly, mutant H-16 (Gly-Leu-Val-Tyr) showed almost identical hydrolyzing and transglycosylation activities to wild type, whereas K-33 (Ser-Gly-Asp-Glu) showed an extremely low transglycosylation activity. Interestingly, K-33 produced glucose, maltose, and acarviosine from acarbose, whereas ThMA hydrolyzed acarbose to only glucose and acarviosine-glucose. These results propose that the substrate specificity, hydrolysis pattern, and transglycosylation activity of ThMA can be modulated by combinatorial mutations near the ESBS.

Trichoderma koningii에서 분리한 $\beta$-glucosidase의 작용양상 (The Action Mode of $\beta$-glucosidase Purified from Trichoderma koningii)

  • 정춘수;최지영;이헌주;맹필재;한인섭;강사욱;하영칠
    • 미생물학회지
    • /
    • 제36권1호
    • /
    • pp.8-13
    • /
    • 2000
  • Trichoderma koningii ATCC 26113에서 분비되는 효소인 $\beta$-glucosidase를 cellobiose, sophorose, laminaribiose 및 gentiobiose 등의 기질과 반응시킨 후 효소의 transglycosylation 반응 산물을 분석하였다. 각각의 기질로부터 생성된 이당체(dimer)들을 HPLC로 분리하고 $^(1)H$-NMR spectroscopy를 통하여 분석하였다. Cellobiose를 기질로 사용하여 효소와 반응시켰을 때 그 산물에는 laminaribiose, sophorose 및 gentiobiose가 포함되었음을 확인할 수 있었다. Laminaribiose, sophorose 및 gentiobiose를 기질로 사용하였을 경우에 효소는 transglycosylation 반응을 통하여 새로운 $\beta$-glycosidic 결합을 갖는 이당체들을 생성하였다. 효소반응에 의하여 누적되는 이당체의 양은 생성속도보다는 분해속도에 의하여 결정되는 것으로 나타났다.

  • PDF

Bifidobacterium longum 유래 재조합 Sucrose Phosphorylase에 의한 Phenolic Compound 배당체 생산 (Transglycosylation of Phenolic Compounds by the Recombinant Sucrose Phosphorylase Cloned from Bifidobacterium longum)

  • 권태연;이종훈
    • 한국미생물·생명공학회지
    • /
    • 제32권3호
    • /
    • pp.286-289
    • /
    • 2004
  • Transglycosylation from sucrose to phenolic compounds by the recombinant sucrose phosphorylase from Bifidobacterium longum was studied. HPLC analysis revealed that the enzyme transferred glucosyl residue of sucrose to 1,2-dihydroxybenzene, 1,4-dihydroxybenzene, 1,2,3-trihydroxybenzene, and 2-hydroxybenzyl alcohol. The enzyme could transfer the glucosyl moiety of sucrose to phenolic compounds which have phenolic OH or alcoholic (hydroxymethyl) OH group.