• Title/Summary/Keyword: transportation behavior of debris

Search Result 4, Processing Time 0.02 seconds

A Study on Transportation Characteristics of Debris dependent on Geologic Conditions (지질조건에 따른 사태물질 이동특성 고찰)

  • Chae Byung-Gon;Kim Won-Young;Lee Choon-Oh;Kim Kyeong-Su;Cho Yong-Chan;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.185-199
    • /
    • 2005
  • Properties of sliding materials are dependent on the lithology because debris is the product of rock weathering processes. In order to characterize transportation behavior of debris dependent of debris types, this study selected 26 debris flows over three areas composed with different rock weathering types and topographic conditions. Analyses of lithology, weathering, and topographic characteristics were performed by detailed field survey. Based on the field survey data, transportation behavior of debris was studied at the aspect of the relationship of grain size and volume of debris as well as topographic conditions. According to the study results, change of slope angle is very influential factor on runout distance of debris among the topographic factors. Because the sliding velocity and the energy of debris are frequently changed and more irregular on an undulating slope, the unout distance of debris is larger than that of an uniformly dipping slope. Runout distance of debris is also influenced by volume and grain size of debris. Volume of debris in the gabbro is four or five times larger than that of the granite area because it is controlled by the lithology. Considered with grain size distribution, runout distance of debris is longer in the gabbro area which is composed with irregular grain size bearing large corestones than that in the medium grained granite area.

A Study on Behavior Characteristics and Triggering Rainfall of Debris Flow (토석류의 거동 특성 및 유발강우에 관한 연구)

  • Jang, Changbong;Choi, Youngnam;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • In this study, the behavior characteristics and triggering rainfall of debris flow were investigated on the basis of DB constructed by performing field investigation and collecting the rainfall data at the sites where debris flow occurred around the west of Gangwon and adjacent areas during the last 10 years. For hill slope and channelized type of debris flow, its behavior characteristic was analyzed through runout channel of debris flow divided into zone of initiation, transportation and deposition and its magnitude was estimated by considering erosion at zones of initiation and transportation. Some considerations related to establishment of landslide forecasting criterion were raised by comparing the analyzed results of analysis of rainfall at the time of debris-flow occurrence with the previous researches about the triggering rainfall of debris flow. In addition, an ID curve of inducing debris flow adequate to the investigated site was proposed and compared with results of previous study.

Numerical Experiment of Debris Flow and Driftwood Behavior with Entrainment Erosion (연행침식을 고려한 토석류와 유목거동의 수치실험)

  • Kang, Tae Un;Jang, Chang-Lae;Kimura, Ichiro;Lee, Nam Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.141-153
    • /
    • 2022
  • In this study, a numerical model of debris flow considering driftwood and entrainment erosion is developed. Subsequently, numerical simulations based on the observation data of the 2011 Mt. Umyeon are performed. To develop the debris flow model, the Nays2DFlood model, which is a flooding model based on the shallow water equation, is coupled with the transport diffusion of mixed sediment concentration, debris flow bottom shear stress, and entrainment erosion modules. The simulation closely reproduced the depth, flow velocity, and debris flow volume of Mt. Umyeon. In addition, the reproducibility of the simulation result with driftwood is more accurate than that without driftwood. The results of this study can facilitate in establishing measures to reduce debris disasters, thus alleviating the current increase in debris damage due to climate change.

Tribological Characteristics of C/C-SiC-Cu Composite and Al/SiC Composite Materials under Various Contact Conditions (접촉 조건에 따른 C/C-SiC-Cu복합재와 Al/SiC복합재의 마모 특성에 관한 연구)

  • Kim, Byung-Kook;Shin, Dong-Gap;Kim, Chang-Lae;Goo, Byeong-Choon;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.21-30
    • /
    • 2017
  • The surface temperature of disc brakes varies during braking, which can affect the friction and wear behavior of braking systems. In order to develop an efficient braking system, the friction and wear behaviors of brake materials need to be clearly understood. In this work, the friction and wear behavior of the C/C-SiC-Cu composite and the Al/SiC composite, which are used in disc braking systems, were investigated. Both the surface temperature and contact pressure were studied. A pin-on-reciprocating tribotester was used for this purpose, in order to control temperature and load. Results showed that the friction varied significantly with temperature and sliding distance. It was found that a transfer layer of compacted wear debris formed on the wear track of the two materials. These layers caused the surface roughness of the wear track to increase. The outcome of this work is expected to serve as a basis for the development of braking systems under various operating conditions.