• Title/Summary/Keyword: tridiagonal matrices

Search Result 12, Processing Time 0.028 seconds

THE MAXIMUM DETERMINANT OF (0,1)-TRIDIAGONAL MATRICES

  • Hwang, Geum-Sug
    • East Asian mathematical journal
    • /
    • v.15 no.2
    • /
    • pp.223-232
    • /
    • 1999
  • In this paper, we give the upper bound of determinants of (0,1)-tridiagonal matrices and we show that the (0,1)-tridiagonal matrices which have maximal determinant are sign-nonsingular.

  • PDF

ON REDUCTION OF K-ALMOST NORMAL AND K-ALMOST CONJUGATE NORMAL MATRICES TO A BLOCK TRIDIAGONAL FORM

  • ASIL, K. NIAZI;KAMALVAND, M. GHASEMI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.267-282
    • /
    • 2019
  • This paper examines how one can build a block tridiagonal structure for k-almost normal matrices and also for k-almost conjugate normal matrices. We shall see that these representations are created by unitary similarity and unitary congruance transformations, respectively. It shall be proven that the orders of diagonal blocks are 1, k + 2, 2k + 3, ${\ldots}$, in both cases. Then these block tridiagonal structures shall be reviewed for the cases where the mentioned matrices satisfy in a second-degree polynomial. Finally, for these processes, algorithms are presented.

NEW LOWER BOUND OF THE DETERMINANT FOR HADAMARD PRODUCT ON SOME TOTALLY NONNEGATIVE MATRICES

  • Zhongpeng, Yang;Xiaoxia, Feng
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.169-181
    • /
    • 2007
  • Applying the properties of Hadamard core for totally nonnegative matrices, we give new lower bounds of the determinant for Hadamard product about matrices in Hadamard core and totally nonnegative matrices, the results improve Oppenheim inequality for tridiagonal oscillating matrices obtained by T. L. Markham.

CLASSIFICATION OF TREES EACH OF WHOSE ASSOCIATED ACYCLIC MATRICES WITH DISTINCT DIAGONAL ENTRIES HAS DISTINCT EIGENVALUES

  • Kim, In-Jae;Shader, Bryan L.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.95-99
    • /
    • 2008
  • It is known that each eigenvalue of a real symmetric, irreducible, tridiagonal matrix has multiplicity 1. The graph of such a matrix is a path. In this paper, we extend the result by classifying those trees for which each of the associated acyclic matrices has distinct eigenvalues whenever the diagonal entries are distinct.

The Seifert Matrices of Periodic Links with Rational Quotients

  • Lee, Sang Youl;Park, Maeng-Sang;Seo, Myoungsoo
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.295-309
    • /
    • 2007
  • In this paper, we characterize the Seifert matrices of $p$-periodic links whose quotients are 2-bridge links $C(2,n_1,-2,n_2,{\cdots},n_r,(-2)^r)$ and give formulas for the signatures and determinants of the 3-periodic links of these kind in terms of $n_1$, $n_2$, ${\cdots}$, $n_r$.

  • PDF

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {qn}

  • JUN, SANG PYO
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.371-377
    • /
    • 2015
  • In this note, we consider a generalized Fibonacci sequence {$q_n$}. Then give a connection between the sequence {$q_n$} and the Chebyshev polynomials of the second kind $U_n(x)$. With the aid of factorization of Chebyshev polynomials of the second kind $U_n(x)$, we derive the complex factorizations of the sequence {$q_n$}.

LEONARD PAIRS OF RACAH AND KRAWTCHOUK TYPE IN LB-TD FORM

  • Alnajjar, Hasan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.401-414
    • /
    • 2019
  • Let ${\mathcal{F}}$ denote an algebraically closed field with characteristic not two. Fix an integer $d{\geq}3$, let $Mat_{d+1}({\mathcal{F}})$ denote the ${\mathcal{F}}$-algebra of $(d+1){\times}(d+1)$ matrices with entries in ${\mathcal{F}}$. An ordered pair of matrices A, $A^*$ in $Mat_{d+1}({\mathcal{F}})$ is said to be LB-TD form whenever A is lower bidiagonal with subdiagonal entries all 1 and $A^*$ is irreducible tridiagonal. Let A, $A^*$ be a Leonard pair in $Mat_{d+1}({\mathcal{F}})$ with fundamental parameter ${\beta}=2$, with this assumption there are four families of Leonard pairs, Racah, Hahn, dual Hahn, Krawtchouk type. In this paper we show from these four families only Racah and Krawtchouk have LB-TD form.

A STUDY ON INVARIANT REGIONS, EXISTENCE AND UNIQUENESS OF THE GLOBAL SOLUTION FOR TRIDIAGONAL REACTION-DIFFUSION SYSTEMS

  • IQBAL M. BATIHA;NABILA BARROUK;ADEL OUANNAS;ABDULKARIM FARAH
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.893-906
    • /
    • 2023
  • In this article, we are devoted to study the problem of the existence, uniqueness and positivity of the global solutions of the 3 × 3 reaction-diffusion systems with the total mass of the components with time. We also suppose that the nonlinear reaction term has a critical growth with respect to the gradient. The technique that we used to prove the global existence is the method of the compact semigroup.