• Title/Summary/Keyword: tunnel support system

Search Result 186, Processing Time 0.023 seconds

Simplification of Tunnel Support System in Karst (석회암 공동발달지역의 터널지보패턴개발에 대한 연구)

  • 김상환;허종석;전덕찬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.281-288
    • /
    • 2003
  • In karst formation area, the tunnel support system is an important factor for the tunnel safety during operation. This paper presents the simplified tunnel support systems to be adopt in karst formation. For the tunnel planned in the project area, karst features and the expected scenarios in the tunnel area were developed based on the results of the geological and geotechnical assessment. In order to provide specific supporting system and construction details for a wide range of possible karst features, the generalized typical support systems are developed according to the classification of karst features. In addition, the initial support systems and construction sequence for each karst feature are also presented in this paper.

  • PDF

Analysis on interaction of Ground and support using Ground response curve for tunnel design (지반응답곡선을 이용한 지반과 지보재의 상호작용 분석)

  • Ahn, Tae-Hun;Ahn, Sung-Hak;Lee, Song
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.1059-1064
    • /
    • 2002
  • The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The load-deformation characteristics of ground and support are derived by the interaction between ground and support. The interaction between ground and support is qualitatively illustrated by a ground response curve. The behavior of an opening and the performance of support system depend upon the load-deformation characteristics of ground and support as well as of the manner and of timing of support installation. The interaction between ground and support is qualitatively illustrated by a ground response curve. The convergence-confinement method don't need the basic assumptions for a mathematical model. Also This is applicable to general tunnel. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

  • PDF

New High-performance Supporting System of Shallow Tunnel in Soil (저토피 구간의 신개념 고성능 터널지보시스템에 대한 연구)

  • Kim, Sang-Hwan;Yun, Seung-Gi
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.7
    • /
    • pp.11-21
    • /
    • 2009
  • This paper presents a new high-performance supporting system of the shallow tunnel. In order to perform this research the mechanism of new supporting system is suggested and compared with the conventional existing supporting system. It is found that the new supporting system as pre-support system has several advantages such as improvement of ground before tunnel excavation and increment of capacity of the tunnel support. The construction procedures of this supporting system are also reviewed. In addition, the numerical simulation is carried out to evaluate the new supporting system. It is found that the new high-performance supporting system is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone, and so on.

Application on Cable bolt as Tunnel Support System (터널 보강재로서의 케이블 볼트의 적용성 평가)

  • Kim, Young-Ho;Yoo, Chan-Ho;Han, Beom-Seok;Kim, Seoung-Wook;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1530-1535
    • /
    • 2009
  • The cable bolt is useful underground space support system such as mining in Europe. In spite of favorable strength characteristics, past record of the cable bolt is rarely in Korea. In this study, to evaluate the mechanically characteristics the cable bolt on tunnel support system. To conduct the laboratory strength test in order to enquire material properties as reinforcement material and numerical analysis was performed considering laboratory test results. To estimate the behavior characteristics on tunnel system in which supported by the cable bolt system and compared the behavior characteristics with the rebar rock bolt system result.

  • PDF

A Study on Behavior of 2-Arch Tunnel by Numerical Approach (수치해석적 접근을 통한 2Arch 터널의 거동양상 고찰)

  • 김상균;박동욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.225-232
    • /
    • 2003
  • The behaviour of ground induced by tunneling of 2arch tunnels may differ from the one caused by usual type tunnels. This paper describe the behaviour created by the size of pilot tunnel and the condition on the construction method of center piller Also, loads acting on the supports of the first tunnel and the center pillar during the excavation of second tunnel is investigated by numerical analyses. The results of numerical analyses are compared to the data records of measurement results, i.e. force on the support system and ground displacement.

  • PDF

Designing of the Beheshtabad water transmission tunnel based on the hybrid empirical method

  • Mohammad Rezaei;Hazhar Habibi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.621-633
    • /
    • 2023
  • Stability analysis and support system estimation of the Beheshtabad water transmission tunnel is investigated in this research. A combination approach based on the rock mass rating (RMR) and rock mass quality index (Q) is used for this purpose. In the first step, 40 datasets related to the petrological, structural, hydrological, physical, and mechanical properties of tunnel host rocks are measured in the field and laboratory. Then, RMR, Q, and height of influenced zone above the tunnel roof are computed and sorted into five general groups to analyze the tunnel stability and determine its support system. Accordingly, tunnel stand-up time, rock load, and required support system are estimated for five sorted rock groups. In addition, various empirical relations between RMR and Q i.e., linear, exponential, logarithmic, and power functions are developed using the analysis of variance (ANOVA). Based on the significance level (sig.), determination coefficient (R2) and Fisher-test (F) indices, power and logarithmic equations are proposed as the optimum relations between RMR and Q. To validate the proposed relations, their results are compared with the results of previous similar equations by using the variance account for (VAF), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean absolute error (MAE) indices. Comparison results showed that the accuracy of proposed RMR-Q relations is better than the previous similar relations and their outputs are more consistent with actual data. Therefore, they can be practically utilized in designing the tunneling projects with an acceptable level of accuracy and reliability.

Standardization of tunnel supporting system in karst formation (석회암 공동발달유형에 따른 터널지보패턴의 표준화에 대한 연구)

  • Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.279-289
    • /
    • 2003
  • In karst formation area, the tunnel support system is an important factor for the tunnel safety during operation. It is also not easy to determine the tunnel supporting system in the design stage. Therefore, it is necessary to standardize the tunnel supporting system in uncertain ground condition. This paper presents the standardization of the tunnel supporting systems to be adopt in karst formation. For the tunnel planned in the project area, karst features and the expected scenarios in the tunnel area were developed based on the results of the geological and geotechnical assessment. In order to provide specific supporting system and construction details for a wide range of possible karst features, the generalized typical support systems are developed according to the classification of karst features. In addition, the initial support systems and construction sequence for each karst feature are also presented in this paper.

  • PDF

Quantitative Estimation of Pre-improvement Support System on Underground Space (지하공간의 사전보강 지보시스템에 대한 정략적 평가에 관한 연구)

  • Lee, Jae-Ho;Kim, Young-Su;Jin, Guang-Ri;Moon, Hong-Duk;Kim, Dea-Man;Hwang, Woon-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.170-180
    • /
    • 2008
  • Successful design, construction and maintenance of NATM tunnel demands prediction, control, stability guidelines, the estimation pre-improvement support system and monitoring of surface settlement, gradient and ground displacement with high accuracy. Moreover, urban NATM tunnel under difficult geotechnical conditions is important the estimation and necessary of pre-improvement support system. Various strategies have been proposed for the quantitative estimation of pre-improvement support system. This paper was investigated and analysed an assessment technique for the quantitative estimation of pre-improvement support system on underground space, as mountain and urban tunnel, in detail. The analysis performed on design and construction stage with field database using the proposed stability estimation index by many researcher including the critical strain and the apparent Young's modulus concept.

  • PDF

Major causes of failure and recent measurements of tunnel construction (터널시공 중 붕락발생 원인과 최신 보강기술)

  • Park, Bong-Ki;Hwang, Je-Don;Park, Chi-Myeon;Kim, Sang-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.140-153
    • /
    • 2005
  • During the tunnel construction the major failure mode can be categorized as: tunnel failure just after the tunnel excavation without support, failure after application of shotcrete and finally failure after setting the concrete lining. The failure mode just after the tunnel excavation without support, can be further classified as : bench failure, crown failure, face failure, full face failure, failure due to weak strata and failure due to overburden. Moreover the failure after application of shotcrete is classified as heading face failure, settlement of shotcrete support, local failure of shotcrete lining and invert shotcrete. To find out the major causes of tunnel collapse, the investigation was done in case of the second phase of Seoul subway construction. The investigation results depicted that the major causes of tunnel collapse were due to the weak layer of rock/fault and sudden influx of ground water from the tunnel crown. While the investigation results of the mountain road tunnels construction have shown that the major causes of tunnel failure were inadequate analysis of tunnel face mapping results, intersection of faults and limestone cavities. In this paper some recent measurement in order to mitigate such tunnel collapse are presented

  • PDF

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF