• Title/Summary/Keyword: ultimate deflection

Search Result 306, Processing Time 0.028 seconds

Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation

  • Kim, Do Kyun;Poh, Bee Yee;Lee, Jia Rong;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.247-259
    • /
    • 2018
  • In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) concept for plate element which is a function of plate slenderness ratio (${\beta}$) and coefficient of initial deflection. In case of initial deflection, buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good agreement ($R^2=0.99$) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting the ultimate strength performance of plate element subjected to longitudinal compression.

Estimation of the Ultimate Compressive Strength of Actual Ship Panels with Complex Initial Deflection (복잡(複雜)한 형상(形狀)의 초기(初期)처짐을 가진 실선(實船)의 Panel의 압괴강도(壓壞强度) 간이추정법(簡易推定法))

  • Paik, Jeom-K.;Kim, Gun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-46
    • /
    • 1988
  • This paper describes a simplified method for estimation of the ultimate compressive strength of actual ship panels with initial deflection of complex shape. The proposed method consists of the elastic analysis using the large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection theory and the rigid-plastic analysis based on the collapse mechanism which also includes the large deformation effect. In order to reduce the computing time for the elastic large deflection analysis, only one term of Fourier series for the plate deflection is considered. The results of the proposed method are in good agreement with those calculated by the elasto-plastic large deflection analysis using F.E.M. and the computing time of the proposed method is extremely short compared with that of F.E.M.

  • PDF

Analysis and prediction of ultimate strength of high-strength SFRC plates under in-plane and transverse loads

  • Perumal, Ramadoss;Palanivel, S.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1273-1287
    • /
    • 2014
  • Plates are most widely used in the hulls of floating concrete structures, bridge decks, walls of off-shore structures and liquid storage tanks. A method of analysis is presented for the determination of load-deflection response and ultimate strength of high-strength steel fiber reinforced concrete (HSSFRC) plates simply supported on all four edges and subjected to combined action of external compressive in-plane and transverse loads. The behavior of HSSFRC plate specimens subjected to combined uniaxial in-plane and transverse loads was investigated. The proposed analytical method is compared to the physical test results, and shows good agreement. To predict the constitutive behavior of HSSFRC in compression, a non-dimensional characteristic equation was proposed and found to give reasonable accuracy.

Strengthening Effect of R/C Beams with different Strengthening Level

  • Park, Sang-Yeol;Park, Jeong-Won;Min, Chang-Shik
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.113-120
    • /
    • 2000
  • This paper presents the behavior and strengthening effect of reinforced concrete rectangular beams strengthened using CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The strengthened beams were stiffer than the control beam before and after reinforcement yielding. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to the strengthening level. The averaged horizontal shear stress of concrete at the interface ranges between (equation omitted) and (equation omitted) (in kg/$\textrm{cm}^2$) depending on strengthening level.

  • PDF

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

The elastic deflection and ultimate bearing capacity of cracked eccentric thin-walled columns

  • Zhou, L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.401-411
    • /
    • 2005
  • The influence of cracks on the elastic deflection and ultimate bearing capacity of eccentric thin-walled columns with both ends pinned was studied in this paper. First, a method was developed and applied to determine the elastic deflection of the eccentric thin-walled columns containing some model-I cracks. A trigonometric series solution of the elastic deflection equation was obtained by the Rayleigh-Ritz energy method. Compared with the solution presented in Okamura (1981), this solution meets the needs of compatibility of deformation and is useful for thin-walled columns. Second, a two-criteria approach to determine the stability factor ${\varphi}$ has been suggested and its analytical formula has been derived. Finally, as an example, box columns with a center through-wall crack were analyzed and calculated. The effects of cracks on both the maximum deflection and the stability coefficient ${\varphi}$ for various crack lengths or eccentricities were illustrated and discussed. The analytical and numerical results of tests on the columns show that the deflection increment caused by the cracks increases with increased crack length or eccentricity, and the critical transition crack length from yielding failure to fracture failure ${\xi}_c$ is found to decrease with an increase of the slenderness ratio or eccentricity.

Flexural Cnaracteristics of Polymer Concrete Sandwich Constructions (폴리머 콘크리트 샌드위치 구조재의 휨특성)

  • 연규석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.125-134
    • /
    • 1989
  • This study was conducted to investigate the flexural behaviour of sandwich constructions with cement concrete core and polymer concrete facings. Six different cross-sectional shapes using epoxy based polymer concrete facings were investigated. Some of the results from the static tests are given including the load-deflection responses, load-strain relationships, ultimate moment, and mode of failure. From the. results the following conclusions can be made. 1. The various strengths of polymer concrete were very high compared to the strengths for portland cement concrete, while modulus of elasticity assumed an aspect of contrast. 2. The thickness of core and facing exerted a great influence on the deflection and ultimate strenght of polymer concrete sandwich constructions. 3. The variation shape of deflection and strain depend on loading were a very close approximation to the straight line. The ultimate strain of polymer concrete at the end of tensile side were ranged from 625x10-6 to 766x10-6 and these values increased in proportion to the decrease of thickness of core and facings. 4. The ultimate moments of polymer sandwich constructions were 3 to 4 times that of cement concrete constructions which was transformed same section. It should he noted that polymer concrete have an effect on the reinforcement of weak constructions. 5. Further tests are neede to investigate the shear strain of constructions, and thermal expansion, shrinkage and creep of cement and polymer concrete which were composite materials of sandwich constructions.

  • PDF

An Assessment on the Ultimate Strength of Welding Joint by the Effect of External Force (外力의 效果를 고려한 熔接部의 最終强度에 대한 評價)

  • Bang, Han-Seo;Cha, Yong-Hun;O, U-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.20-29
    • /
    • 1995
  • When structures are constructed by welding, structural elements are always accompained by welding residual stress and deformation. Therefore, when the rigidity and strength of the welded structures is considered, it is very important to have sufficient information about the effect of initial deflection and welding residual stress on them. In this paper, the square plates with welding residual stress under compression are dealt with; First, heat conduction and thermal elastic-plastic problems are analyzed by finite element method using 4-node isoparametric elements for assessment on the ultimate strength of welding joint. Later, the ultimate strength of welding joint is assessed by examining the effect of changed type of loading. The specimens are 500{\times}$500mm(a/b=1) and 750{\times}$500mm(a/b=1.5) rectangular plates of whichthicknesses is 9.0mm and simply supported plates getting axiul load in each direction.

  • PDF

An Experimental Study on Flexural Repair of Reinforced Concrete Beams with the CFRP Sheet (탄소섬유시트를 사용한 철근콘크리트 구조물의 휨 보강에 관한 실험적 연구)

  • 박정원;박상렬;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.781-786
    • /
    • 2000
  • This paper presents the behavior and strenghening effect of reinforced concrete rectangular beams strengthened sing CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to th strengthening level.

  • PDF

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.