• Title/Summary/Keyword: ultra-precision positioning

Search Result 117, Processing Time 0.023 seconds

A Study on the Optimal Structural Design and Computer Simulation of Delta Stage for ultra Precision Positioning (초정밀위치결정을 위한 델타스테이지의 최적 설계 및 컴퓨터 시뮬레이션에 관한 연구)

  • 김재열;김영석;송찬일;곽이구;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.221-225
    • /
    • 2001
  • Recently, high accuracy and high precision are required in various industrial fields that are composed of semiconductor manufacturing apparatus and ultra precision positioning apparatus and information system and so on. The positioning technology is a very important one among them. This technology has been rapidly developed, its field needs for positioning accuracy to high as submicron. It is expected that accuracy with 10 nm in precision working and accuracy with 1 nm in ultra precision working are reached at the beginning of 2000s. Recently, to accomplish this positioning technology, many researches are concerned about it and make efforts it. This paper contain design technology of ultra precision 2-axis(X-Y Delta) stage for materialize to positioning accuracy with submicron, where, Delta stage is design as optimum against load and disturbance. And computer simulation is performed for stability and dynamic characteristic of Delta stage.

  • PDF

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Computer Simulation and Control performance evaluation of Ultra Precision Positioning Apparatus using DC Servo Motor (DC Servo Motor를 이용한 초정밀 위치결정기구의 컴퓨터 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;윤성운;이규태;곽이구;송인석;한재호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.164-169
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. As such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. Control performance and stability analysis were performed in advance by modeling and designing the controller with Simulink.

  • PDF

A Study on the Design of Ultra Precision Positioning Apparatus using FEM (I) (유한요소법을 이용한 초정밀 미동스테이지 설계에 관한 연구(I))

  • 김재열;윤성운;김항우;한재호;곽이구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.190-194
    • /
    • 2001
  • Because, Piezo-electric transducer(PZT) transform electric energy into mechanical energy, it is a adequate material for positioning control and force control, take excellent properties as actuator with high speed and high performance. Recently, researches of ultra precision positioning using this PZT are advanced in. In this paper, we use a actuator of PZT, design a positioning apparatus with ultra precision position apparatus as hinge structure. Because of this purpose, before, we were confirmed in control properties of ultra precision stage by FEM method.

  • PDF

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

Control performance evaluation of ultra precision servo apparatus(II) (초정밀서보기구의 제어성능 평가(II))

  • 김재열;김영석;곽이구;마상동;한재호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.617-620
    • /
    • 2000
  • Recently, High accuracy and precision are required in various industrial field especially, semiconductor manufacturing apparatus, Ultra precision positioning apparatus, Information field and so on. Positioning technology is a very important one among them. Is such technology has been rapidly developed, this field needs the positioning accuracy as high as submicron. It is expected that the accuracy of 10nm and 1nm is required in precision work and ultra precision work field, respectively by the beginning of 2000s. High speed and low vibration are also needed. This work deals with the design method and control system of Ultra precision positioning apparatus. We will examine the control performance and stability before manufacturing the real apparatus by using MATLAB SIMULINK based or pre-designed controller and system modeling.

  • PDF

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.

The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage (평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

Optimal Design of Controller for Ultra-Precision Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 최적제어기 설계)

  • Kwak, L. K.;kim, J. Y.;Yang, D. J.;Ko, M. S.;You, S.;Kim, K. T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF

Performance assessment of an ultraprecision machine tool positioning system with a friction drive

  • Song Chang-Kyu;Shin Young-Jae;Lee Hu-sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.3
    • /
    • pp.8-12
    • /
    • 2005
  • The positioning system for an ultra precision machine tool must be accurate to the order of a nanometer. Various feed drive devices have been proposed to achieve this resolution; currently, most attention is directed towards hydrostatic lead screws and friction drives. It has been reported that a positioning resolution accurate to an angstrom can be achieved using a twist-roller friction drive. Therefore, we manufactured an ultra precision positioning system driven by a twist-roller friction drive and assessed its performance when defining problems and finding solutions. Our study showed that the twist-roller friction drive is mechanically suitable for ultra precision positioning, but some considerations are required to obtain a higher resolution.