• Title/Summary/Keyword: unconfined compression test

Search Result 201, Processing Time 0.026 seconds

A simplified method to estimate the total cohesion of unsaturated soil using an UC test

  • Lin, Horn-Da;Wang, Chien-Chih;Wang, Xu-Hui
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.599-608
    • /
    • 2018
  • This study investigates the feasibility of adopting the results of the UC (unconfined compression) test to assess the total cohesion of the unsaturated soil. A series of laboratory tests were conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compression test was combined with the pressure plate test to obtain the unconfined compression strength and its matric suction of the samples. Soil samples were first compacted at designated water content and then subjected to the wetting process for saturation and the subsequent drying process to its target suction using the apparatus developed by the authors. The correlations among the matric suction, the unconfined compression strength and the total cohesion were studied. As a result, a simplified method to estimate the total cohesion using the unconfined compressive strength is suggested. The calculated results compare reasonably with the unsaturated triaxial test results. Current results show good performance; however, further study is warranted.

Application of Artificial Neural Network Theory for Evaluation of Unconfined Compression Strength of Deep Cement Mixing Treated Soil (심층혼합처리된 개량토의 일축압축강도 추정을 위한 인공신경망의 적용)

  • Kim, Young-Sang;Jeong, Hyun-Chel;Huh, Jung-Won;Jeong, Gyeong-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1159-1164
    • /
    • 2006
  • In this paper an artificial neural network model is developed to estimate the unconfined compression strength of Deep Cement Mixing(DCM) treated soil. A database which consists of a number of unconfined compression test result compiled from 9 clay sites is used to train and test of the artificial neural network model. Developed neural network model requires water content of soil, unit weight of soil, passing percent of #200 sieve, weight of cement, w-c ratio as input variables. It is found that the developed artificial neural network model can predict more precise and reliable unconfined compression strength than the conventional empirical models.

  • PDF

A Study on The Unconfined Compression Test Method of Cohesive Soil (점성토(粘性土)의 일축압축강도(一軸壓縮强度) 시험방법(試驗方法)에 대(對)한 고찰(考察))

  • Kang, Yea Mook;Lee, Sei Jin;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.2
    • /
    • pp.95-101
    • /
    • 1990
  • In order to investigate the influence of unconfined compression strength on undisturbed cohesive soil, the unconfined compression test were carried out on the basis of various size of specimen and compression rate. The result of these experiments were summarized as follows. 1. As the section area of specimen increased. the unconfined compression strength was decreased. 2. As the ratio of height and diameter of specimen increased, the unconfined compression strength was decreased. 3. The unconfined compression strength was increased by 3%, but in values over the 3% was decrease. 4. As the compression rate increased. the modulus of deformation was increased.

  • PDF

Analysis for Bearing Capacity of Basalt by Vesicle Area Ratio (현무암 기공면적에 따른 지지력분석)

  • Nam, Kwan-Woo;Kim, Sang-Ho;Kim, Ju-Tae;Park, Gun-Soo;Seo, Seok-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1001-1010
    • /
    • 2009
  • The study that unconfined compression strength of intact rock which is the most important factor to determine the bearing capacity effects discontinuities in rock mass has been carried out actively so far. However, the study which is related to lithological characters such as vesicle which is one of the primary characteristics of Basalt has barely been conducted. On this study, We have analyzed the correlation-ship between vesicle and unconfined compression strength and the effect on the bearing capacity, based on the reviewing on the changes of unconfined compression strength as the amount of vesicle of Basalt. It is impossible to analyze the amount of vesicle of Basalt as measuring unit. So it was analyzed by the ratio of the core sample's surface area and another area that vesicle takes up. Also, unconfined compression strength was calculated by point load test and unconfined compression strength test. The analysis shows that vesicle area ratio and unconfined compression strength have the exponential relationship and vesicle area ration is the factor to determine the bearing capacity of Basalt. It is considered that the reliability of calculating of the bearing capacity of Basalt will be improved as we study the correlation-ship between the vesicle area ratio and rock mass grade hereafter.

  • PDF

Geotechnical Properties of Soil-Bentonite Mixtures (흙-벤토나이트 혼합물의 지반공학적 특성)

  • 채교익;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF

Strength Characteristics of CSG material (CSG 재료의 강도특성에 관한 연구)

  • Park, Han-Gyu;Kim, Ki-Young;Cho, Sung-Eun;Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.619-626
    • /
    • 2005
  • This work aims at studing the stress-strain-strength behavior of an CSG(cemented sand and gravel) materials. An analysis of the mechanical behavior of the CSG is performed from the interpretation of results by unconfined compression test, large triaxial compression test in which the influence of both the degree of cementation and age. For CSG, It was concluded that the characterristics of compression are direct measurment of the degree of cementation and age. In addition, hyperbolic model is adopted to express the relation between elastic moduli and cementation, age, confined stress in small strain. The results of the test show that clear correlation with each other

  • PDF

Laboratory investigation of unconfined compression behavior of ice and frozen soil mixtures

  • Jin, Hyunwoo;Lee, Jangguen;Zhuang, Li;Ryu, Byung Hyun
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.219-226
    • /
    • 2020
  • Unconfined compression test (UCT) is widely conducted in laboratories to evaluate the mechanical behavior of frozen soils. However, its results are sensitive to the initial conditions of sample creation by freezing as well as the end-surface conditions during loading of the specimen into the apparatus for testing. This work compared ice samples prepared by three-dimensional and one-dimensional freezing. The latter created more-homogenous ice samples containing fewer entrapped air bubbles or air nuclei, leading to relatively stable UCT results. Three end-surface conditions were compared for UCT on ice specimens made by one-dimensional freezing. Steel disc cap with embedded rubber was found most appropriate for UCT. Three frozen materials (ice, frozen sand, and frozen silt) showed different failure patterns, which were classified as brittle failure and ductile failure. Ice and frozen sand showed strain-softening, while frozen silt showed strain-hardening. Subsequent investigation considered the influence of fines content on the unconfined compression behavior of frozen soil mixtures with fines contents of 0-100%. The mixtures showed a brittle-to-ductile transition of failure patterns at 10%-20% fines content.

Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process (재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성)

  • Song, Chang-Seob;Kim, Myeong-Hwan;Kim, Gi-Beom;Park, Oh-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black

  • Chhun, Kean Thai;Choo, Hyunwook;Kaothon, Panyabot;Yune, Chan-Young
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Soil-cement stabilization is a type of ground improvement method which has been used to improve the engineering properties of soil. The unconfined compression test is the commonly used method to evaluate the quality of the stabilized soil due to its simplicity, reliability, rapidity and cost-effectiveness. The main objective of this study was to evaluate the effect of recovered carbon black (rCB) on the strength characteristic of cement-stabilized sand. Various rCB contents and water to cement ratios (w/c) were examined. The unconfined compression test on stabilized sand with different curing times was also conducted for a reconstituted specimen. From the test result, it was found that the compressive strength of cement-stabilized sand increased with the increase of the rCB content up to 3% and the curing time and with the decrease of the w/c ratio, showing that the optimum rCB concentration of the tested stabilized sand was around 3%. In addition, a prediction equation was suggested in this study for cement-stabilized sand with rCB as a function of the w/c ratio and rCB concentration at 14 and 28 days of curing.

The Compressive Strength and Durability Characteristics of Lime-Cement-Soil Mixtures (석회-시멘트 혼합토의 압축강도 및 내구 특성)

  • Oh, Sang-Eun;Yeon, Kyu-Seok;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.83-91
    • /
    • 2012
  • In this study, the compressive strength characteristics of lime-cement-soil mixtures, composed of lime, soil, and a small amount of cement, were investigated by performing the unconfined compression tests, the freezing and thawing tests, the wetting and drying tests and the permeability tests. The specimens were made by mixing soils with cement and lime. The cement contents were 0, 6, 8 and 10 %, and the lime contents were 2, 4, 5, 10, 15 and 20 % in weight. Each specimen was cured at constant temperature in a humidity room for 3, 7 and 28 days. The compressive strength characteristics of the lime-cement-soil mixtures were then investigated using the unconfined compression tests, freezing and thawing tests and the wetting and drying tests. Based on the test results, a discussion was made on the applicability of the lime-cement-soil mixtures as a construction material.