• 제목/요약/키워드: uneven corrosion

검색결과 14건 처리시간 0.023초

Prediction of tensile strength degradation of corroded steel based on in-situ pitting evolution

  • Yun Zhao;Qi Guo;Zizhong Zhao;Xian Wu;Ying Xing
    • Steel and Composite Structures
    • /
    • 제46권3호
    • /
    • pp.385-401
    • /
    • 2023
  • Steel is becoming increasingly popular due to its high strength, excellent ductility, great assembly performance, and recyclability. In reality, steel structures serving for a long time in atmospheric, industrial, and marine environments inevitably suffer from corrosion, which significantly decreases the durability and the service life with the exposure time. For the mechanical properties of corroded steel, experimental studies are mainly conducted. The existing numerical analyses only evaluate the mechanical properties based on corroded morphology at the isolated time-in-point, ignoring that this morphology varies continuously with corrosion time. To solve this problem, the relationships between pit depth expectation, standard deviation, and corrosion time are initially constructed based on a large amount of wet-dry cyclic accelerated test data. Successively, based on that, an in-situ pitting evolution method for evaluating the residual tensile strength of corroded steel is proposed. To verify the method, 20 repeated simulations of mass loss rates and mechanical properties are adopted against the test results. Then, numerical analyses are conducted on 135 models of corrosion pits with different aspect ratios and uneven corrosion degree on two corroded surfaces. Results show that the power function with exponents of 1.483 and 1.091 can well describe the increase in pit depth expectation and standard deviation with corrosion time, respectively. The effect of the commonly used pit aspect ratios of 0.10-0.25 on yield strength and ultimate strength is negligible. Besides, pit number ratio α equating to 0.6 is the critical value for the strength degradation. When α is less than 0.6, the pit number increases with α, accelerating the degradation of strength. Otherwise, the strength degradation is weakened. In addition, a power function model is adopted to characterize the degradation of yield strength and ultimate strength with corrosion time, which is revised by initial steel plate thickness.

환경열화에 의한 가선재의 피로거동 (Fatigue Behavior of Catenary Wires by Environments Degradation)

  • 김용기;장세기
    • 한국철도학회논문집
    • /
    • 제7권1호
    • /
    • pp.14-19
    • /
    • 2004
  • The effect of surface damage on fatigue properties of catenary wires were investigated to estimate their service lift. As surface defects of the wires caused by surface corrosion increase, surface roughness gets worse, and as roughness increases, it is easy for moisture coming from rain and dew to be condensed around uneven parts of the surface. The condensed moisture causes a locally severe corrosion which leads to damage of the wires. Corrosion of catenaty wires can make their actual lifetime shorter than that originally designed. The amount of decrease was more prominent as environmental conditions became more corrosive. They are also vibrated with some amplitude everytime pantographs touch contact line. The frequent cyclic load on the wire may result in a fatigue fracture. Surface damage by corrosion can make formation of crack initiation at fatigue. In the present study, the fatigue life of the used wire was measured 35 to 50% compared with that of new one in average.

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가 (Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF

3.5% NaCl에서 Arc Thermal and Plasma Arc Spray 공법이 적용된 Al- Zn 코팅 강재의 내 식 성능 평가에 관한 연구 (Performance of Al-Zn Coating by Arc Thermal and Plasma arc Thermal Spray Processes in 3.5% NaCl Solution)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.17-18
    • /
    • 2021
  • In the present study, Al-Zn coating was deposited by Arc thermal (AT) and plasma arc thermal (PAT) spray processes, and their corrosion characteristics were studied in 3.5% NaCl through electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM) and mechanical tests. The bond adhesion result showed that plasma arc sprayed coating had a higher value attributed to compact, dense, and less porous coating compared to arc thermal spray coating which contains defects/pores and uneven morphology as revealed by scanning electron microscope analysis. Electrochemical results revealed that the plasma arc sprayed coating had a high polarization resistance at early stage of immersion, suggesting its excellent corrosion protection performance.

  • PDF

Effect of Power Mode of Plasma Anodization on the Properties of formed Oxide Films on AZ91D Magnesium Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.544-550
    • /
    • 2018
  • The passivation of AZ91D Mg alloys by plasma anodization requires deliberate choice of process parameters due to the presence of large amounts of structural defects. We study the dependence of pore formation, surface roughness and corrosion resistance on voltage by comparing the direct current (DC) mode and the pulse wave (pulse) mode in which anodization is performed. In the DC plasma anodization mode, the thickness of the electrolytic oxide film of the AZ91D alloy is uneven. In the pulse mode, the thickness is relatively uniform and the formed thin film has a three-layer structure. The pulse mode creates less roughness, uniform thickness and improved corrosion resistance. Thus, the change of power mode from DC to pulse at 150 V decreases the surface roughness (Ra) from $0.9{\mu}m$ to $0.1{\mu}m$ and increases the corrosion resistance in rating number (RN) from 5 to 9.5. Our study shows that an optimal oxide film can be obtained with a pulse voltage of 150 V, which produces an excellent coating on the AZ91D casting alloy.

Corrosion Behavior of Stainless Steel 316 for Carbon Anode Oxide Reduction Application

  • Jeon, Min Ku;Kim, Sung-Wook;Choi, Eun-Young
    • 방사성폐기물학회지
    • /
    • 제18권2호
    • /
    • pp.169-177
    • /
    • 2020
  • Here, the stability of stainless steel 316 (SS-316) was investigated to identify its applicability in the oxide reduction process, as a component in related equipment, to produce a complicated gas mixture composed of O2 and Cl2 under an argon (Ar) atmosphere. The effects of the mixed gas composition were investigated at flow rates of 30 mL/min O2, 20 mL/min O2 + 10 mL/min Cl2, 10 mL/min O2 + 20 mL/min Cl2, and 30 mL/min Cl2, each at 600℃, during a constant argon flow rate of 170 mL/min. It was found that the corrosion of SS-316 by the chlorine gas was suppressed by the presence of oxygen, while the reaction proceeded linearly with the reaction time regardless of gas composition. Surface observation results revealed an uneven surface with circular pits in the samples that were fed mixed gases. Thermodynamic calculations proposed the combination of Fe and Ni chlorination reactions as an explanation for this pit formation phenomenon. An exponential increase in the corrosion rate was observed with an increase in the reaction temperature in a range of 300 ~ 600℃ under a flow of 30 mL/min Cl2 + 170 mL/min Ar.

공동주택의 증축형 리모델링 안전진단 내구성 평가의 표본 수 최적화 방안 연구 (A Study on the Optimization of Field Sampling Number of the Durability Evaluation Method for the Extension Remodeling of the Apartment Housing)

  • 신희철;최기봉;윤상천
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.60-68
    • /
    • 2018
  • 주택법에 근거하여 철근콘크리트 공동주택의 리모델링 시 최대 3개층의 수직증축 및 기존 세대수의 15%까지 증축이 가능하게 되었다. 수직증축 리모델링 가능 여부는 안전진단 기준 및 매뉴얼을 바탕으로 기울기 및 침하, 내하력, 내구성 평가 부문에 대한 조사를 통하여 평가하고 판정하도록 되어 있다. 그러나 현행 증축형 리모델링 안전진단 기준 및 매뉴얼은 재건축 안전진단 기준과 비교하여 조사대상표본 수를 증대시키는 등 보수적인 것으로 평가되고 있으며, 특히 내구성 평가 부문에 검토 및 개선이 필요한 것으로 생각된다. 따라서 본 연구에서는 수도권 지역 공동주택의 증축형 리모델링 안전진단 조사 사례에 대한 내구성 조사 항목 중 콘크리트 탄산화를 대상으로 통계적인 수법에 의해 표본 수 합리화 방안을 제시하였다.

수직 중축형 리모델링 안전진단 내구성 평가기준 합리화에 관한 연구 (A Study on the Durability Evaluation Criteria for the Vertical Extension Remodeling of Apartment)

  • 윤상천;신동철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권6호
    • /
    • pp.197-205
    • /
    • 2020
  • 주택법(2014년)에 근거하여 철근콘크리트 공동주택의 리모델링 시 수직 및 세대수 증축이 가능하게 되었다. 수직증축 리모델링 가능 여부는 안전진단 기준 및 매뉴얼을 바탕으로 기울기 및 침하, 내하력, 내구성 평가 부문에 대한 평가를 통하여 판정하도록 되어 있다. 그러나 증축형 리모델링 기준 및 매뉴얼 제정 당시, 국내에서는 수직증축 리모델링 안전진단 사례가 전무하여 평가기준 등에 대한 공학적 근거 제시에 한계가 있었으며, 특히 내구성 평가 기준에 대한 합리화 및 관련 기준과의 부합을 위한 개선이 필요한 것으로 생각된다. 따라서 본 연구에서는 국내외 내구성 관련 기준을 근거로 콘크리트 탄산화, 염분함유량, 균열, 철근부식, 표면노후도의 허용치와 평가기준에 대한 검토·분석을 통하여 수직증축형 리모델링 안전진단 내구성 평가방법의 합리화 방안을 제시하였다.

불규칙적인 격자망을 이용한 생체 연조직의 곡면변형률 측정 (Measurement of Surface Strain on Soft Biological Tissues Using Irregular Grid Pattern)

  • 이준식;김기홍;김형종
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.1051-1057
    • /
    • 2013
  • 본 연구에서는 광학적 방법으로 곡면변형률을 측정하고자 할 때, 소재 표면이 임의의 곡면이거나 요철이 많은 경우, 부식이나 오염으로 표면이 불량한 경우, 그리고 고무나 폼, 생체 조직 등과 같이 규칙적인 격자망을 인쇄하기 어려운 경우에도 적용할 수 있는 자동 곡면변형률 측정시스템 'ASIAS-bio'를 개발하였다. 이 시스템은 시편의 재질과 표면상태, 격자 패턴과 크기, 격자 마킹 방법, 변형 정도 등 측정 조건에 관계없이 사용이 가능한 것이 특징이다. 우선 그 신뢰성을 평가하기 위하여 금속판재 성형제품의 변형률 분포를 상용 장비로 측정한 결과와 비교하였다. 또한, 돼지 어깨 관절막, 인체 무릎 피부 등 연질 생체 조직의 변형 측정에 적용함으로써 본 시스템의 유용성을 확인하였다.