• 제목/요약/키워드: uniform grid

검색결과 207건 처리시간 0.027초

A method Based on Boundary Deformation for Planar Grid Generation

  • Liu, Xinru;Liu, Duanfeng;Han, Xuli
    • International Journal of CAD/CAM
    • /
    • 제8권1호
    • /
    • pp.63-67
    • /
    • 2009
  • This paper puts forward a method based on the boundary deformation for planar grid generation. Many methods start with the special properties of grid and switch to the solution of a direct optimization or a non-linear minimum cost flow. Though with high theoretical significance, it's hard to realize due to the extremely complicated computing process. This paper brings out the automatic generation of planar grid by studying the boundary deformational properties of planar grid, which leads to uniform grid and enjoys the simplicity of computation and realization.

공간 네트워크에서 이동객체의 위치정보 관리를 위한 동적 분산 그리드 기법 (Dynamic Distributed Grid Scheme to Manage the Location-Information of Moving Objects in Spatial Networks)

  • 김영창;홍승태;조경진;장재우
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제15권12호
    • /
    • pp.948-952
    • /
    • 2009
  • 최근 공간 네트워크에서 대용량 이동객체의 위치정보를 관리하기 위한 DS-GRID(distributed S-GRID)가 제안되었다[1]. 그러나 DS-GRID는 균일 크기의 그리드 셀을 이용하기 때문에, 실제 응용에서 빈번히 발생하는 이동 객체의 쏠림 현상을 효율적으로 관리하지 못하는 단점을 지닌다. 이를 해결하기 위해, 본 논문에서는 이동객체의 밀도에 따라 그리드 셀을 동적으로 분할하는 동적 분산 그리드 기법을 제안한다. 아울러 이를 위한 k-최근접 질의처리 알고리즘을 제안한다. 마지막으로 성능 평가를 통해 이동객체의 쏠림 현상이 발생하였을 경우, 제안하는 동적 분산 그리드 기법이 검색 및 업데이트 성능 측면에서 DS-GRID 보다 우수함을 입증한다.

유한차분모형을 위한 직사각형 격자정보 생성기법 (Generation Method of the Rectangular Grid Information for Finite Difference Model)

  • 정신택;조범준;김정대
    • 한국해안해양공학회지
    • /
    • 제15권3호
    • /
    • pp.190-195
    • /
    • 2003
  • 연안 및 해안에서 발생하는 파랑변형, 조석 전파, 부유사 이동 및 확산 현상 등을 예측하기 위해서는 수치모형이 주로 사용된다 대표적인 수치모형 기법으로는 유한차분법 및 유한요소법이 있다. 유한차분법을 사용하는 경우에는 관심영역의 각 격자점에서 유한차분 방정식을 풀어야하므로, 격자망 및 경계조건 등이 설정되어야 한다. 유한차분용 격자망은 유한요소법과는 달리 격자망이 간단하지만, 지형이 복잡한 경우에 편리하게 사용 할 수 있는 격자정보 생성기법이 별로 개발되어 있지 않다. 또한, 상업용으로 많이 개발되어 있는 프로그램도 대부분 유한요소법에 근거한 수치모형에서 사용하는 격자생성을 목적으로 하고 있다. 본 연구에서는 디지타이저(Summagrid IV 기종)를 사용하여 유한차분모형을 위한 동일한 간격의 직사각형 격자 수심자료를 만드는 세부과정을 자료로 소개하고자 한다. 필요한 프로그램은 Golden Software사의 Didger(dititiger 지원 S/W)와 Surfer(gridding & contouring S/W)로서, 비교적 간단하게 정확한 수심 자료를 얻을 수 있으며, 임의의 지점 떠는 영역에 제시된 정보로부터 필요한 직사각형 격자정보를 추출하는 방법에 적용이 가능하다.

SURFACE RECONSTRUCTION FROM SCATTERED POINT DATA ON OCTREE

  • Park, Chang-Soo;Min, Cho-Hon;Kang, Myung-Joo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권1호
    • /
    • pp.31-49
    • /
    • 2012
  • In this paper, we propose a very efficient method which reconstructs the high resolution surface from a set of unorganized points. Our method is based on the level set method using adaptive octree. We start with the surface reconstruction model proposed in [20]. In [20], they introduced a very fast and efficient method which is different from the previous methods using the level set method. Most existing methods[21, 22] employed the time evolving process from an initial surface to point cloud. But in [20], they considered the surface reconstruction process as an elliptic problem in the narrow band including point cloud. So they could obtain very speedy method because they didn't have to limit the time evolution step by the finite speed of propagation. However, they implemented that model just on the uniform grid. So they still have the weakness that it needs so much memories because of being fulfilled only on the uniform grid. Their algorithm basically solves a large linear system of which size is the same as the number of the grid in a narrow band. Besides, it is not easy to make the width of band narrow enough since the decision of band width depends on the distribution of point data. After all, as far as it is implemented on the uniform grid, it is almost impossible to generate the surface on the high resolution because the memory requirement increases geometrically. We resolve it by adapting octree data structure[12, 11] to our problem and by introducing a new redistancing algorithm which is different from the existing one[19].

Effect of Nonuniform Vertical Grid on the Accuracy of Two-Dimensional Transport Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kim, Hyun-Ju;Kang, Hyun-Gyu
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.317-326
    • /
    • 2018
  • Effect of the nonuniform grid on the two-dimensional transport equation was investigated in terms of theoretical analysis and finite difference method (FDM). The nonuniform grid having a typical structure of the numerical weather forecast model was incorporated in the vertical direction, while the uniform grid was used in the zonal direction. The staggered and non-staggered grid were placed in the vertical and zonal direction, respectively. Time stepping was performed with the third-order Runge Kutta scheme. An error analysis of the spatial discretization on the nonuniform grid was carried out, which indicated that the combined effect of the nonuniform grid and advection velocity produced either numerical diffusion or numerical adverse-diffusion. An analytic function is used for the quantitative evaluation of the errors associated with the discretized transport equation. Numerical experiments with the non-uniformity of vertical grid were found to support the analysis.

새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석 (A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir)

  • 전지혜;정세웅
    • 한국물환경학회지
    • /
    • 제28권1호
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

중첩 격자계를 이용한 물체운동의 수치 시뮬레이션 (Numerical Simulation of Body Motion Using a Composite Grid System)

  • 박종천;전호환;송기종
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

중첩격자계와 접합격자계를 이용한 적응격자 기법 (A Grid Adaptation Method Using the Chimera and Patched Grid Systems)

  • 김대희;권장혁
    • 한국항공우주학회지
    • /
    • 제33권10호
    • /
    • pp.17-25
    • /
    • 2005
  • 중첩격자계와 접합격자계를 이용한 적응격자 기법이 개발되었다. 유동장은 물체와 근접한 영역과 떨어진 영역으로 구분된다. 근접한 영역은 곡선 격자계로 채워지며 중첩격자기법으로 영역이 연결되고 떨어진 영역은 다양한 적응 단계를 가진 직교 격자계로 채워지며 접합격자기법으로 연결된다. 본 적응격자기법은 격자생성에 있어서의 유연성과 효과적인 격자적응 기능을 보여준다. 2차원 스토어 분리 해석을 포함하는 몇 가지 수치해석을 통해 본 적응격자기법의 성능을 검증하였다.

그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구 (A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing)

  • 홍승도;하만영;조금원
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Numerical Simulation of Wind Pressures on a High-rise Building by Auto-mesh System

  • Tang, Yuanzhe;Cao, Shuyang
    • 국제초고층학회논문집
    • /
    • 제8권4호
    • /
    • pp.255-264
    • /
    • 2019
  • This paper describes large eddy simulation of wind pressures on a square cylinder in a uniform flow and a high-rise building immersed in an atmospheric turbulent boundary layer. For the atmospheric boundary layer case, the inflow turbulence is generated by a numerical wind tunnel. In the numerical simulation, particular attention is devoted to the performance of an auto hexahedral non-structural mesh. Both simulations are performed for three grid systems: an auto hexahedral non-structured grid, a structured Cartesian grid and a non-structured triangular prism grid, and for three grid numbers. The present study shows that the auto hexahedral unstructured mesh achieves the best simulation results for wind pressures on the square cylinder and the high-rise building. When the grid number is sufficiently large, the differences among the results obtained from the three investigated grid systems are not significant. However, the advantage of the auto hexahedral unstructured mesh becomes clear when the grid number decreases, because it enables a balanced distribution of orthogonal grids. The results described in this paper demonstrate that the auto hexahedral non-structured mesh has good potential applicability to simulation of urban flows.