• Title/Summary/Keyword: unit weight

Search Result 2,336, Processing Time 0.038 seconds

A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean (수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구)

  • 김명식;윤재범;박세인
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

Development of Weight Sensing Unit of Fruit Weight Grader Using Load Cell (중량선과기(重量選果機)의 중량감지부(重量感知部) 개선(改善)에 관(關)한 연구(硏究))

  • Kim, H.S.;Koh, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.4
    • /
    • pp.358-370
    • /
    • 1993
  • In Korea, fruit grading has been mainly done manually, and manual grading depends on human sense. Thus it is subjected to human error and is not always as consistent as would be desired. Therefore, a study on the development of fruit grader was initiated to improve the consistency of fruit grading. The sensitivity for fruit weight of the conventional spring type weight grader has a tendency to decrease by physical characteristics of spring which is used as a weight sensing unit. This study was carried out to develop weight measuring device for establishing the base of weight sensing unit of electronic weight grader. This device consists of a weight sensor using load cell, data acquisition system, and a microcomputer containing program to calculate fruit weight. The weight measuring device using load cell was developed to increase sensitivity of fruit weight. The result of this study showed that the weight sensing unit of electronic weight grader contributed to the improvement of performance of weight measuring device.

  • PDF

Correlation between Compressive Strength and Unit Weight of Lightweight Foamed Controlled Low Strength Material (CLSM) Using Coal Ash (석탄회를 활용한 경량기포 CLSM의 압축강도와 단위중량의 상관관계)

  • Lee, Jong-Hwi;Lee, Hye-Jin;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.39-47
    • /
    • 2013
  • With the increase in the application of CLSM using coal ash, we performed a basic research on CLSM material, laying focus on the correlation between compressive strength and unit weight of lightweight foamed CLSM. The unconfined compression strength is a criterion for the judgment of the possibility of re-excavation and an important factor determining the economy, efficiency, and excavation character. However, to know the quantitative compression strength value takes a certain amount of time, because the applicability of unconfined compression strength of CLSM is judged by the standard of 28days. Therefore, in this study the relation between compressive strength and unit weight (foam slurry unit weight, apparent unit weight) is analyzed focusing on lightweight foamed CLSM. We also suggested a formula which can easily predict the 28-day compressive strength only using unit weight value without the need to cure the slurry for 28 days.

Evaluation of Maximum Dry Unit Weight Prediction Model Using Deep Neural Network Based on Particle Size Analysis (입도분석에 기반한 Deep Neural Network를 이용한 최대 건조 단위중량 예측 모델 평가)

  • Kim, Myeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.3
    • /
    • pp.15-28
    • /
    • 2023
  • The compaction properties of the soil change depending on the physical properties, and are also affected by crushing of the particles. Since the particle size distribution of soil affects the engineering properties of the soil, it is necessary to analyze the material properties to understand the compaction characteristics. In this study, the size of each sieve was classified into four in the particle size analysis as a material property, and the compaction characteristics were evaluated by multiple regression and maximum dry unit weight. As a result of maximum dry unit weight prediction, multiple regression analysis showed R2 of 0.70 or more, and DNN analysis showed R2 of 0.80 or more. The reliability of the prediction result analyzed by DNN was evaluated higher than that of multiple regression, and the analysis result of DNN-T showed improved prediction results by 1.87% than DNN. The prediction of maximum dry unit weight using particle size distribution seems to be applied to evaluate the compacting state by identifying the material characteristics of roads and embankments. In addition, the particle size distribution can be used as a parameter for predicting maximum dry unit weight, and it is expected to be of great help in terms of time and cost of applying it to the compaction state evaluation.

The Study on Miniaturization and Weight Reduction of Auxiliary Power Unit in Magnetic Levitation Train

  • Lee, Na Ri;Shin, Hee Keun;Choi, Sung Ho;Kim, Ju Bum;Lim, Jae Won;Park, Doh Young;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • Due to the characteristics of the vehicle structure, the magnetic levitation train has a confined bottom space thus a study on miniaturization and weight reduction of auxiliary power unit is essential. This auxiliary power unit is an essential device used for illumination, air conditioning, heating and air brake equipment excluding the motor. The previous auxiliary power unit for magnetic levitation train has used the hard switching having a high switching frequency with heavy loss in order to reduce the size of filter reactor and transformer but the reduction in volume was not significant. In this paper, by reducing the loss, reducing the size of the cooling unit and by increasing the switching frequency using the soft switching of resonant converter, it has miniaturized and reduced the weight of filter reactor and transformer which occupy significant space in the auxiliary power unit. This study has verified the performance of 50KVA grade prototype through simulated interpretation and analysis, and compared the size and weight of auxiliary power unit of the previous magnetic levitation train.

Evaluation of the Unit Weight and Strength Properties of Lightweight Porous Blocks according to Replacement Ratio of Bottom Ash Aggregate (바텀애쉬골재 대체율에 따른 경량투수블록의 단위용적질량 및 강도특성 평가)

  • Lee, Kyung-Su;Oh, Tae-Gue;Jeong, Su-Bin;Kim, Young-Uk;Choi, Hee-Yong;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.215-216
    • /
    • 2019
  • Recently, due to abnormal climate phenomena caused by greenhouse gas, flood damage such as local torrential rain has been emerging in Korea. Accordingly, there is a growing need for porous blocks capable of permeability in concrete, but there are limitations in commercialization due to problems such as high unit weight and flexural strength development limitations. This study investigates the unit weight and strength properties of porous blocks using bottom ash as an alternative to aggregate as part of a study to improve the light weight of porous blocks.

  • PDF

A Study on the Development of the Artigicial Eco Light-Weight Aggregate using EAF-Dust and Application of the Concrete (전기로제강 분진의 복합안정화 처리를 통한 에코이공경량골재의 개발 및 콘크리트 적용 연구)

  • Lee, Jin-Woo;Kim, Kyung-Min;Jung, Chul-Hee;Bae, Yeoun-Ki;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.149-152
    • /
    • 2005
  • To make artificial light-weight aggregate with EAF-dust and estimate ability to apply to concrete, characteristics of the aggregate were considered in density, weight of unit volume, fineness modulus and so on. And then it was executed to experiments of the concrete mixed with the light-weight aggregate. As it was results that artificial light-weight aggregate with EAF-dust was heavier and more watertight than with only clay, concrete weight of unit volume was heavier than with expended clay aggregate. But it was regarded that concrete with EAF-dust artificial aggregate was able to field application as light-weight concrete because concrete of the weight of unit volume was lighter and compress strength and workability were similar to normal concrete.

  • PDF

Birth Weight and the Development of Functional Gastrointestinal Disorders in Infants

  • Baldassarre, Maria Elisabetta;Di Mauro, Antonio;Salvatore, Silvia;Tafuri, Silvio;Bianchi, Francesco Paolo;Dattoli, Enzo;Morando, Lucia;Pensabene, Licia;Meneghin, Fabio;Dilillo, Dario;Mancini, Valentina;Talarico, Valentina;Tandoi, Francesco;Zuccotti, Gianvincenzo;Agosti, Massimo;Laforgia, Nicola
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.4
    • /
    • pp.366-376
    • /
    • 2020
  • Purpose: To assess the association between birth weight and the development of functional gastrointestinal disorders (FGIDs) in the first year of life. Methods: This is a secondary analysis of a prospective cohort multicenter study including neonates, consecutively enrolled at birth, and followed up for one year. At birth all infants were classified by birth weight as extremely low (ELBW), very low, or low when <1,000, <1,500, and <2,500 g, respectively, and by birth weight for gestational age as appropriate (AGA, weight in the 10-90th percentile), small (SGA, weight <10th percentile), and large (LGA, weight >90th percentile) for gestational age. FGIDs were classified according to the Rome III criteria and assessed at 1, 3, 6, and 12 months of life. Results: Among 1,152 newborns enrolled, 934 (81.1%) completed the study: 302 (32.3%) were preterm, 35 (3.7%) were ELBW, 104 (11.1%) were SGA, 782 (83.7%) were AGA, and 48 (5.1%) were LGA infants. Overall, throughout the first year of life, 718 (76.9%) reported at least one FGID. The proportion of infants presenting with at least one FGID was significantly higher in ELBW (97%) compared to LBW (74%) (p=0.01) and in LGA (85.4%) and SGA (85.6%) compared to AGA (75.2%) (p=0.0001). On multivariate analysis, SGA was significantly associated with infantile colic. Conclusion: We observed an increased risk of FGIDs in ELBW, SGA, and LGA neonates. Our results suggest that prenatal factors determining birth weight may influence the development of FGIDs in infants. Understanding the role of all potential risk factors may provide new insights and targeted approaches for FGIDs.

Experimental Study on Compaction Effect of Hydraulic Fill Soils (실내실험을 통한 수중 매립토의 다짐효과 분석)

  • Lee, Haeng-Woo;Chang, Pyoung-Wuck;Chang, Woong-Hee;Bong, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.301-310
    • /
    • 2006
  • A series of laboratory tests was carried out for analyzing compaction characteristics of hydraulic fill soils(or hydraulically filled soils). Hydraulic fill soils were settled down by the weight of soil particle itself in water and consolidated by the extraction of water from the soil structures. Water content and dry unit weight were observed as the depth of sedimentation and consolidation soil. It was found from the result that the optimum water content $(W_{cpt})$ of the maximum unit weight$(\gamma_{dmax})$ is higher than that of laboratory compaction test(KS F 2312 A method). It was due to difference in compaction energy and compaction effect between two methods. And the maximum dry unit of hydraulic fill soil is smaller than that of laboratory compaction test. Especially in terms of compaction effect, the maximum relative compaction degrees$(R_{cmax})$ of Seamangum dredged sand, river sand and mixed sand, half and half of dredged and river sands, were 85%, 91% and 86%, respectively. It means that the compaction effect can be $85\sim91%$ of the maximum unit weight in laboratory compaction test.

  • PDF

Fluidity, Compressive strength and Unit Weight Characteristics of Mortar According to the Replacement Rate of Bottom Ash Aggregate (바텀애시 골재 대체율에 따른 모르타르의 유동성, 압축강도 및 단위질량 특성)

  • Bae, Sung-Ho;Youn, Joo-Ho;Lee, Jae-Sung;Lee, Jae-In;Kim, Ji-Hwan;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.180-181
    • /
    • 2021
  • This study compared and analyzed the fluidity, compressive strength, and unit weight characteristics of mortar using bottom ash aggregates as part of a study to develop alternative aggregates

  • PDF