• Title/Summary/Keyword: unmanned laboratory

Search Result 61, Processing Time 0.023 seconds

Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft (유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증)

  • Hyoung Jin Kim;Sang Eun Kwon;Young Wo Jo;Bong Gyu Kim;Eun Kyoung Go
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2023
  • This paper describes the system integration laboratory's requirement analysis, implementation, and verification for multiple-scenario unmanned aerial vehicle operation and control technology using a manned rotorcraft for Manned-Unmanned Teaming. System integration laboratory consists of manned rotorcraft flight simulation, unmanned aerial vehicle flight and mission equipment simulation, ground control system simulation for unmanned aerial vehicle control and change in the control authority between the ground control system and manned rotorcraft, and operation and control system for mission plan's writing and transmission. Each implemented simulation verified the requirements through software and hardware integration test.

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

Improvement of Communication Reliability of Small UAV by a Tapered Stacked Antenna

  • Kim, Duck-Hwan;Lee, Kyu-Hwan;Kim, Young-Sik
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.796-798
    • /
    • 2006
  • This letter proposes a tapered stacked microstrip antenna for application in small unmanned aerial vehicles (UAVs), which has advantages in mountainous terrains. With its tapered structure and increased bandwidth designed to operate at the resonance frequency of 2.4 GHz, the proposed antenna improves directivity, accuracy, and precision of small UAVs. The test flight results show the proposed tapered antenna has a three times higher impedance capability of 350 MHz based on VSWR<2. The transmission pattern is also more reliable than that of previous antenna designs.

  • PDF

A Study on Test Environment and Process for Interface Verification of Unmanned Aerial Systems (무인항공기 체계 연동검증을 위한 시험환경 및 검증절차에 관한 연구)

  • Cho, Sunme
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.3
    • /
    • pp.40-47
    • /
    • 2019
  • This paper proposes the environment construction and test method of system integration laboratory (SIL) and system integration test (SIT) for verification of interface between onboard equipment and ground control equipment of unmanned aerial systems (UAS). This research also describes the interface environment between subsystems built in SIL and verification methods for the systems' operation logic through simulated flights. Similarly, the paper handles the ground integration test process of UAS in the real testing environments.

Design of Real-time Video Acquisition for Control of Unmanned Aerial Vehicle

  • Jeong, Min-Hwa
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.131-138
    • /
    • 2020
  • In this paper, we analyze the delay phenomenon that can occur when controlling an unmanned aerial vehicle using a camera and describe a solution to solve the phenomenon. The group of pictures (GOP) value is changed in order to reduce the delay according to the frame data size that can occur in the moving image data transmission. The appropriate GOP values were determined through experimental data accumulation and validated through camera self-test, system integration laboratory (SIL) verification test and system integration test.

Laboratory on network (네트워크 상에서의 물리실험)

  • Nam Yuri;Kim J. -S.
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.4
    • /
    • pp.164-174
    • /
    • 2004
  • Computer control of experiments is very powerful because computer can outperform human being for most routine and repeated procedures. We successfully made the whole process of sputtering and annealing fully automated and controllable through network. The present work shows a possibility of building unmanned laboratory.

Trajectory tracking control of underactuated USV based on modified backstepping approach

  • Dong, Zaopeng;Wan, Lei;Li, Yueming;Liu, Tao;Zhang, Guocheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.5
    • /
    • pp.817-832
    • /
    • 2015
  • This paper presents a state feedback based backstepping control algorithm to address the trajectory tracking problem of an underactuated Unmanned Surface Vessel (USV) in the horizontal plane. A nonlinear three Degree of Freedom (DOF) underactuated dynamic model for USV is considered, and trajectory tracking controller that can track both curve trajectory and straight line trajectory with high accuracy is designed as the well known Persistent Exciting (PE) conditions of yaw velocity is completely relaxed in our study. The proposed controller has further been enriched by incorporating an integral action additionally for enhancing the steady state performance and control precision of the USV trajectory tracking control system. Global stability of the overall system is proved by Lyapunov theory and Barbalat's Lemma, and then simulation experiments are carried out to demonstrate the effectiveness of the controller designed.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.

Unmanned Last Mile Delivery Technology Level Analysis (무인 라스트마일 배송 기술 수준 분석)

  • Wooyeon Yu;Eunhye Kim;Dohyun Kim;Jaekyung Yang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.225-232
    • /
    • 2022
  • Recently, unmanned logistics delivery systems, such as UAV (Unmanned Aerial Vehicle, written as drone below) and autonomous robot delivery systems, have been implemented in many countries due to the rapid development of autonomous driving technology. The development of these new types of advanced unmanned logistics delivery systems is essential not only to become a leading logistics company but also to secure national competitiveness. In this paper, the application of the unmanned logistics delivery system was investigated in terms of market trends, overall technology level of last mile delivery drone and autonomous delivery robot. The direction of response to changes in the last mile delivery service market was checked through a comparison of the technological level between domestic companies that produce last mile devices and advanced foreign companies. As a result of this technology level analysis, the difference between domestic companies and advanced companies was shown using tables and figures to show their relative levels. The results of this analysis reflect the opinions of experts in the field of last-mile delivery technology. In addition, the technology level of unmanned logistics delivery systems for each country was analyzed based on the number of related technology patents. Lastly, insights for the technology level analysis of unmanned last mile delivery systems were proposed as a conclusion.

Analysis and Improvement on Process of Mission Autonomy in UxAS (UxAS의 임무 자율화 절차 및 개선 방안 분석)

  • YunGeun Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Mission autonomy system should be embedded on UAV (Unmanned Aerial Vehicle) for mosaic warfare where UAVs autonomously assign tasks to themselves. UxAS (Unmanned x-systems Autonomy Service) proposed by Air Force Research Laboratory is mission autonomy system for unmanned platforms. UxAS has extensible structure composed of numerous module services. However, UxAS can conduct mission autonomy process only when an operator sends an autonomy request. In this paper, We analyze the process of mission autonomy in UxAS, and propose an improved structure of UxAS where mission autonomy process is autonomously triggered by situation awareness service without the request of the operator. The proposed process was validated by simulation.