• Title/Summary/Keyword: unresolved resonance

Search Result 10, Processing Time 0.027 seconds

Evaluation of Neutron Cross Sections of Dy Isotopes in the Resonance Region

  • Oh, Soo-Youl;Gil, Choong-Sup;Jonghwa Chang
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.46-61
    • /
    • 2001
  • The neutron cross sections of $^{160}$ Dy, $^{161}$ Dy, $^{162}$ Dy, $^{l63}$Dy, and $^{164}$ Dy have been evaluated in the resonance region of which upper energy is set to several tens of keV. The cross sections are formulated with resonance parameters in the energy region under consideration. In the resolved resonance region, the positive-energy resonance parameters were adopted from the BNL compilation published in 1984 with slight, if any, modifications. A bound level resonance for each isotope except $^{162}$ Dy was invoked to reproduce the reference 2200 m/s cross sections and the bound coherent scattering length. Subsequently, the statistical behavior of the resolved resonance parameters was analyzed, and thus obtained s-wave average parameters were adopted in the unresolved resonance region. In addition, recent measurements of the capture cross sections in the unresolved region were taken into account in adjusting the average resonance parameters for high orbital angular momentum resonances. The present evaluation resulted in large improvements in the cross sections over the ENDF/B-Vl release 6.6.

  • PDF

NEUTRON INDUCED CROSS SECTION DATA FOR IR-191 AND IR-193

  • Lee, Yong-Deok;Lee, Young-Ouk
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.803-808
    • /
    • 2006
  • The neutron induced nuclear cross section data for Ir-191 and Ir-193 were calculated and evaluated from unresolved resonance energy to 20MeV. The energy-dependent optical model potential parameters were determined based on the experimental data and applied up to 20MeV. A spherical optical model, a statistical model in an equilibrium energy region, and a multistep direct and multistep compound model in a pre-equilibrium energy region were used in the calculations. The direct capture model enhanced the fast neutron capture in the pre-equilibrium energy. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The calculations were found to be in good agreement with the experiment data. The evaluated cross section results were compiled with the ENDF-6 format. The fast energy results will be merged with the resonance parts to create a full evaluation library. The improvement of the neutron-induced cross section data will contribute to an increase in the efficiency of the production of Ir-192 as a radiation source.

Electronic Spectroscopy and Structure of CLF

  • Vadim A. Alekseev;D. W. Setser
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.1
    • /
    • pp.9-22
    • /
    • 2000
  • Optical-optical double resonance experiments have been used to identify and characterize five ion-pair states and several of the bound and repulsive valence states of ClF. This report provides a description of these experiments for $^{35}CIF$ and $^{37}CIF$, and a summary of the current knowledge of the valence and ion-pair states. The important role of perturbations among the rovibronic levels of the bound valence states and their utilization in the double resonance technique is discussed. The ion-pair states of the same symmetry, ${\Omega}$=$0^+$ (E and f) and 1( $\beta$ and G) interact very strongly and the spectroscopy of these states is anomalous and, hence, interesting. Comparison is made to some recent ab initio calculations for ClF. One possible explanation of the irregular vibrational energy levels and rotational constants of the ion-pair states of $O^+$ and 1 symmetry is a crossing of the diabatic potentials of these states. Some currently unresolved questions about ClF spectroscopy are posed for future work. Where appropriate, analogy is made between the electronic states of ClF and the corresponding valence and ion-pair states of $Cl_2.$.

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

The Spin-Rotation Interaction of the Proton and the Fluorine Nucleus in the Tetrahedral Spherical Top Molecules

  • Lee, Sang-Soo;Ozier, Irving;Ramsey, N.F.
    • Nuclear Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.38-43
    • /
    • 1973
  • The spin-rotation constants of the proton and tile fluorine nucleus in C $H_4$, Si $H_4$, Ge $H_4$, C $F_4$, Si $F_4$ and Ge $F_4$ were determined experimentally by the molecular beam magnetic resonance method. From the Hamiltonian and the high field approximation, the quantized energy level is given by the following equation. W $m_{I}$ $m_{J}$=- $g_{I}$ $m_{I}$H- $g_{J}$ $m_{J}$H- $C_{av}$ $m_{I}$ $m_{J}$, where $c_{av}$ is one third of the trace of the C tensor. In the nuclear resonance experiment, the proton and the fluorine nuclear resonance curves consist of many unresolved lines given by v=- $g_{J}$H- $C_{av}$ $m_{I}$, and a Gaussian approximation is made to correlate $c_{av}$ to the experimentally obtained half-width of the resonance curve. In the rotational resonance experiment, the five resonance peaks as predicted by v=- $g_{I}$H- $c_{av}$ $m_{I}$, $m_{I}$=0, $\pm$1 and $\pm$2, were all observed. The magnitude of car was determined by measuring the frequency distance between two adjacent peaks. The sign of $c_{av}$ was determined by the side peak suppression technique. The technique is described, and the sign and magnitude of the spin-rotation constant cav are summarized as following: for C $H_4$ -10.3$\pm$0.4tHz(from the rotational resonance), for SiH +3.71$\pm$0.08kHz(from the nuclear resonance), for Ge $H_4$+3.79$\pm$0.13kHz(from the nuclear resonance), for C $F_4$, -6.81$\pm$0.08kHz(from the rotational resonance), for Si $F_4$, -2.46$\pm$0.06kHz(from the rotational resonance), and finally for Ge $F_4$-1.84$\pm$0.04kHz(from the rotational resonance).onal resonance).esonance).

  • PDF

Current Status of ACE Format Libraries for MCNP at Nuclear Data Center of KAERI

  • Kim, Do Heon;Gil, Choong-Sup;Lee, Young-Ouk
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.191-195
    • /
    • 2016
  • Background: The current status of ACE format MCNP/MCNPX libraries by NDC of KAERI is presented with a short description of each library. Materials and Methods: Validation calculations with recent nuclear data evaluations ENDF/BV-II. 0, ENDF/B-VII.1, JEFF-3.2, and JENDL-4.0 have been carried out by the MCNP5 code for 119 criticality benchmark problems taken from the expanded criticality validation suite supplied by LANL. The overall performances of the ACE format KN-libraries have been analyzed in comparison with the results calculated with the ENDF/B-VII.0-based ENDF70 library of LANL. Results and Discussion: It was confirmed that the ENDF/B-VII.1-based KNE71 library showed better performances than the others by comparing the RMS errors and ${chi}^2$ values for five benchmark categories as well as whole benchmark problems. ENDF/B-VII.1 and JEFF-3.2 have a tendency to yield more reliable MCNP calculation results within certain confidence intervals regarding the total uncertainties for the $k_{eff}$ values. Conclusion: It is found that the adoption of the latest evaluated nuclear data might ensure better outcomes in various research and development areas.

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

Isotopic Fissile Assay of Spent Fuel in a Lead Slowing-Down Spectrometer System

  • Lee, Yongdeok;Jeon, Juyoung;Park, Changje
    • Nuclear Engineering and Technology
    • /
    • v.49 no.3
    • /
    • pp.549-555
    • /
    • 2017
  • A lead slowing-down spectrometer (LSDS) system is under development to analyze isotopic fissile content that is applicable to spent fuel and recycled material. The source neutron mechanism for efficient and effective generation was also determined. The source neutron interacts with a lead medium and produces continuous neutron energy, and this energy generates dominant fission at each fissile, below the unresolved resonance region. From the relationship between the induced fissile fission and the fast fission neutron detection, a mathematical assay model for an isotopic fissile material was set up. The assay model can be expanded for all fissile materials. The correction factor for self-shielding was defined in the fuel assay area. The corrected fission signature provides well-defined fission properties with an increase in the fissile content. The assay procedure was also established. The assay energy range is very important to take into account the prominent fission structure of each fissile material. Fission detection occurred according to the change of the Pu239 weight percent (wt%), but the content of U235 and Pu241 was fixed at 1 wt%. The assay result was obtained with 2~3% uncertainty for Pu239, depending on the amount of Pu239 in the fuel. The results show that LSDS is a very powerful technique to assay the isotopic fissile content in spent fuel and recycled materials for the reuse of fissile materials. Additionally, a LSDS is applicable during the optimum design of spent fuel storage facilities and their management. The isotopic fissile content assay will increase the transparency and credibility of spent fuel storage.

Synthesis, Structure and Characterization of Nd2XCd2-3XSiO4 (0.01≤X≤0.21) Solid-Solutions (Nd2XCd2-3XSiO4 (0.01≤X≤0.21) 고용체의 합성과 구조 규명)

  • Ramesh, S.;Das, B.B.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.502-508
    • /
    • 2011
  • Synthesis of $Nd_{2x}Cd_{2-3x}SiO_4$ ($0.01{\leq}x{\leq}0.21$) [S1-S3: x=0.01, 0.11 and 0.21] solid solutions were prepared by solgel method. Powder x-ray diffraction (XRD) results show monoclinic unit cell with space group P21/m. The average crystallite sizes are found to be 20 to 45 nm. The Scanning Electron Microcopy (SEM) images show morphology of the sample is in globular nature. The energy dispersive analysis of x-rays (EDX) and X-ray mapping results confirmed that all the constituent elements of the composites were present and that were distributed in uniformly. The optical absorption band at ~750 nm was due to $^4I_{9/2}{\rightarrow}^4F_{7/2}+^4S_{3/2}$ transition optically active $Nd^{3+}$ ions. Electron Paramagnetic Resonance (EPR) lineshapes of S1-S3 at 10, 40, 77 and 300 K show a broad unresolved isotropic lineshapes were observed due to rapid spin lattice relaxation of $Nd^{3+}$.