• Title/Summary/Keyword: upconversion characteristics

Search Result 10, Processing Time 0.026 seconds

Synthesis and Characterization of Upconversion Nanoparticles for Cancer Therapy

  • Choe, Seung-Yu;Kim, Bo-Bae;Kim, Eun-Bi;Lee, Seung-U;Jeon, Seon-A;Park, Tae-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.420.2-420.2
    • /
    • 2016
  • Various fields have been paid attention to upconversion nanoparticles (UCNPs) because of its unique optical properties. Moreover, to use the UC luminescent techniques through cell images for identified apoptosis/necrosis of cancer cells have been performed. They have been studied for a versatile biomedical application such as a biosensing tool, or delivery of active forms of medicines inside living cells. UCNPs have distinctive characteristics such as photoluminescence, special emission, low background fluorescence signal and good colloidal stability, which have many advantages compared with the organic dyes and quantum dots. UCNPs have not only a great potential for imaging (UC luminescence) but also therapies (photo-thermal therapy, PTT and photo-dynamic therapy, PDT) in cancer diagnostics. Therefore, we report the enhancement of upconversion red emission in NaYF4:Yb3+,Er3+ nanoparticles, synthesized via solid-state method with the thermal decomposition of trifluoroacetate as precursors and organic solvent at a high boiling point. The UCNPs have an emission in the field of near infrared wavelength, cubic shape and nano-size in length. In this study, we will further investigate it for cancer therapy with NIR optical detection onto the solid substrate.

  • PDF

Low Noise Local Oscillator Design in K Band using Baseband Noise Upconversion Gain Analysis (저주파 잡음 상향 변화 이득 해석을 이용한 K 밴드 저잡음 국부 발진기의 설계)

  • 이영택;이문규;임종식;염인복;장동필;남상욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.462-469
    • /
    • 2001
  • In this paper, local oscillator in K band using low frequency noise upconversion gain anaylsis was designed and measured. We extended Two Signal Method(TSM) to estimate upconversion gain and resulting phase noise. To confirm the validity of the proposed method, a free-running oscillator which had low upconversion gain was designed. The measured oscillation frequency was 23.42 GHz and phase noise at 1 MHz of offset was -105.2 dBc/Hz. Also, this oscillator was operated for subharmonic injection locked osci1lator(SILO). In this case, SILO showed ideal frequency multiplier phase noise characteristics at low subharmonic injection power level.

  • PDF

Fabrication of Microcrystalline NaPbLa(WO4)3:Yb3+/Ho3+ Phosphors and Their Upconversion Photoluminescent Characteristics

  • Lim, Chang Sung;Atuchin, Victor V.;Aleksandrovsky, Aleksandr S.;Denisenko, Yuriy G.;Molokeev, Maxim S.;Oreshonkov, Aleksandr S.
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.741-746
    • /
    • 2019
  • New triple tungstate phosphors NaPbLa(WO4)3:Yb3+/Ho3+ (x = Yb3+/Ho3+ = 7, 8, 9, 10) are successfully fabricated by microwave assisted sol-gel synthesis and their structural and frequency upconversion (UC) characteristics are investigated. The compounds crystallized in the tetragonal space group I41/a and the NaPbLa(WO4)3 host have unit cell parameters a = 5.3927(1) and c = 11.7961(3) Å, V = 343.05(2) Å3, Z = 4. Under excitation at 980 nm, the phosphors have yellowish green emissions, which are derived from the intense 5S2/5F45I8 transitions of Ho3+ ions in the green spectral range and strong 5F55I8 transitions in the red spectral range. The optimal Yb3+:Ho3+ ratio is revealed to be x = 9, which is attributed to the quenching effect of Ho3+ ions, as indicated by the composition dependence. The UC characteristics are evaluated in detail under consideration of the pump power dependence and Commission Internationale de L'Eclairage chromaticity. The spectroscopic features of Raman spectra are discussed in terms of the superposition of Ho3+ luminescence and vibrational lines. The possibility of controlling the spectral distribution of UC luminescence by the chemical content of tungstate hosts is demonstrated.

Luminescence Characteristics of (Y0.85-xYb0.15)3Ga5O12:Er3+x Phosphors ((Y0.85-xYb0.15)3Ga5O12:Er3+x 형광체의 형광특성)

  • Chung, Jong Won;Yi, Soung Soo
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1308-1314
    • /
    • 2018
  • $Er^{3+}$ and $Yb^{3+}$ co-doped $Y_3Ga_5O_{12}$ polycrystalline powders were prepared by using a solid-state reaction method, and their crystallinities were measured using X-ray diffraction. According to the results of X-ray diffraction, the powders showed a polycrystalline tetragonal structure. The photoluminescence and the upconversion luminescence properties of the $(Y_{0.85-x}Yb_{0.15})_3Ga_5O_{12}:Er^{3+}_x$ (x = 0.03, 0.06, 0.09, 0.12 and 0.15) phosphors were investigated in detail. Green and red upconversion emissions were observed for the phosphors excited by 980 nm radiation from a semiconductor laser. The powders exhibited strong green and weak red upconversion emission peaks at 553 and 660 nm, respectively. Also, their upconversion processes were explained using an energy-diagram analysis and the strongest upconversion intensity was emitted by the powder with a 0.12 mol $Er^{3+}$ ion concentration.

Principle and Research Trends of Triplet-triplet Annihilation Upconversion (삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황)

  • Lee, Hak Lae;Shin, Sung Ju;Lee, Myung Soo;Choe, Hyun Seok;Kim, Jae Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.731-744
    • /
    • 2017
  • Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phenomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.

A 3.3V 30mW 200MHz CMOS upconversion mixer using replica transconductance (복제 V-I 변환기를 이용한 3.3V 30mW 200MHz CMOS 업 컨버젼 믹서)

  • Kwon, Jong-Kee;Kim, Ook;Oh, Chang-Jun;Lee, Jong-Ryul;Song, Won-Chul;Kim, Kyung-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.1941-1948
    • /
    • 1997
  • In this paper, the power efficient linear upconversion mixer which is a functional circuit in transmit path of intermediate frequency(IF) part of Code Division Multiple (CDMA) cellular phone was explained. In generally, the low CMOS devices limits the implementation of upconversion mixer especially for lower loads. Using replica transconductor, the linear range is extended up to the limit. Thiscircuit was imprlemented using $0.8{\mu}\textrm{m}$ N-well CMOS technology with 2-poly/2-metal. The active area of chip is $0.53mm{\times}0.92mm$. The power consumption is 30mW with 3.3V suply voltage. The 1dB conpression characteristics is -27.3dB with $25{\Omega}$. load and being applied by 2-tone input signal. The mixer operates properly above 200MHz.

  • PDF

Thermal stabilizing effect of Yb3+ Er3+ codoping into TiO2 powder prepared by sol-gel method and its upconversion characteristic (Yb3+ Er3+ ions 동시도핑에 의한 TiO2 분말의 열적 안정성 증가효과와 upconversion 특성 연구)

  • Eun, Jong-Won;Oh, Dong-Keun;Kim, Kwang-Jin;Hong, Tae-Ui;Jeong, Seong-Min;Choi, Bong-Geun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.4
    • /
    • pp.173-177
    • /
    • 2010
  • Thermal stabilizing effect of $Yb^{3+},\;Er^{3+}$ codoping into $TiO_2$ powder prepared by sol-gel method and its upconversion characteristics were analyzed. The effect of $TiO_2:Yb^{3+},\;Er^{3+}$ ions on crystallinity and phase transition was studied by X-ray diffraction (XRD). The change of band-gap energy induced from Yb and Er codoping was analyzed by UV-Vis. The band-gap energy of $TiO_2$ have been slightly narrowed by $Yb^{3+},\;Er^{3+}$ codoping, which indicated that the $Yb^{3+},\;Er^{3+}$ ions can enhance the photo-catalytic property of $TiO_2$. green and red up-conversions of $Yb^{3+}$ and $Er^{3+}$ co-doped $Y_2O_3:Yb^{3+},\;Er^{3+}$ phosphor were analyzed by PL equipped with 980 nm laser.

Luminescence Characterization of SrAl2O4:Ho3+ Green Phosphor Prepared by Spray Pyrolysis (분무열분해법으로 제조된 SrAl2O4:Ho3+ 녹색 형광체의 발광특성)

  • Jung, Kyeong Youl;Kim, Woo Hyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.620-626
    • /
    • 2015
  • $Ho^{3+}$ doped $SrAl_2O_4$ upconversion phosphor powders were synthesized by spray pyrolysis, and the crystallographic properties and luminescence characteristics were examined by varying activator concentrations and heattreatment temperatures. The effect of organic additives on the crystal structure and luminescent properties was also investigated. $SrAl_2O_4:Ho^{3+}$ powders showed intensive green emission due to the $^5F_4/^5S_2{\rightarrow}^5I_8$ transition of $Ho^{3+}$. The optimal $Ho^{3+}$ concentration in order to achieve the highest luminescence was 0.1%. Over this concentration, emission intensities were largely diminished via a concentration quenching due to dipole-dipole interaction between activator ions. According to the dependence of emission intensity on the pumping power of a laser diode, it was clear that the upconversion of $SrAl_2O_4:Ho^{3+}$ occurred via the ground state absorption-excited state absorption processes involving two near-IR photons. Synthesized powders were monoclinic as a major phase, having some hexagonal phase. The increase of heat-treatment temperatures from $1000^{\circ}C$ to $1350^{\circ}C$ led to crystallinity enhancement of monoclinic phase, reducing hexagonal phase. The hexagonal phase, however, did not disappear even at $1350^{\circ}C$. When both citric acid (CA) and ethylene glycol (EG) were added to the spray solution, the resulting powders had pure monoclinic phase without forming hexagonal phase, and led to largely enhancement of crystallinity. Also, N,N-Dimethylformamide (DMF) addition to the spray solution containing both CA and EG made it possible to effectively reduce the surface area of $SrAl_2O_4:Ho^{3+}$ powders. Consequently, the $SrAl_2O_4:Ho^{3+}$ powders prepared by using the spray solution containing CA/EG/DMF mixture as the organic additives showed about 168% improved luminescence compared to the phosphor prepared without organic additives. It was concluded that both the increased crystallinity of high-purity monoclinic phase and the decrease of surface area were attributed to the large enhancement of upconversion luminescence.

Theoretical modeling and analysis of thulium doped fluoride fiber amplifier at 1.47 $\mu\textrm{m}$ band amplification (툴륨이 첨가된 플루오르 계열의 광섬유 증폭기의 1.47$\mu\textrm{m}$ 증폭 대역에 대한 모델링과 분석에 대한 연구)

  • 이원재;민범기;박재형;박남규
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.171-178
    • /
    • 2000
  • We present a numerical model which enables to analyze $1.47mu$m amplification band characteristics for thulium doped fluoride fiber amplifiers. We focused on upconversion pumping scheme, thus many transitions affecting $1.47mu$m band amplification was considered simultaneously. Backward propagating waves and transverse mode were also considered in the model. The parameters for modeling were then acquired using published experimental data and related theories such as Judd-Ofelt theory for radiative transition, empirical energy gap law for non-radiative transition, and McCumber relations for cross-sections. The simulation showed well-matched results with experiment and internal dynamics. amics.

  • PDF