• Title/Summary/Keyword: uv-hormesis

Search Result 3, Processing Time 0.02 seconds

The Identification of Stilbene Compounds and the Change of Their Contents in UV-irradiated Grapevine Leaves (자외선 조사 포도 잎에서 Stilbene 화합물의 동정과 함량의 변화)

  • Choi, Seong-Jin
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.374-381
    • /
    • 2011
  • Stilbenes are polyphenolic natural products, which have antioxidative and antifungal activities. In some plants, including grapevine, the stilbene compounds, as resveratrol derivatives, exist in very diverse forms. Experiments to identify the individual stilbene compounds were carried out first to quantify them in UV-irradiated grapevine leaves. For this, stilbene glycosides were extracted from grapevine leaves which irradiated intensively with UV light. The glycoside samples were hydrolyzed by ${\beta}$-glucosidase, before analyzed by HPLC-mass spectrometer at each m/z corresponding to the mass of specific stilbenes. As results, in chromatograms, the enzymatic hydrolysis resulted in decrease and increase of the peaks expected for glycosides and aglycones, respectively. The samples were also exposed to sunlight in order to photo-isomerize the stilbene compounds. The light exposure resulted in disappearance and appearance of peaks expected for trans- and cis-isomers of stilbenes, respectively. Such a change of the peaks in chromatograms provided information needed for the inference to peak components. In this way, it was possible to identify 16 kinds of stilbene compounds from grapevine leaves. The identified stilbenes were quantified from grapevine leaves irradiated mildly by UV light. The UV-irradiation increased markedly in the content of stilbene compounds, especially trans-resveratrol by several hundredfold. In addition, piceatannol, which is a mere minor component of stilbenes in control leaves and a more active radical scavenger than resveratrol, was also increased by several tenfold by the treatment. The increase in stilbene contents as influenced by UV irradiation seems to be one of the stress coping responses of grapevine as a hormesis phenomenon.

Enhancement of Skin Color by Postharvest UV Irradiation in 'Fuyu' Persimmon Fruits (수확 후 자외선 조사에 의한 '부유' 단감의 과피 착색 증진)

  • Choi, Seong-Jin
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.441-446
    • /
    • 2011
  • The effects of UV irradiation, as a hormetic stimulus, on the postharvest persimmon fruits (Diospyros kaki cv. Fuyu) were investigated in regards to the change of carotenoid contents and flesh softening, when the UV irradiation was combined with or without the pretreatment of 1-methylcyclopropene (1-MCP) as an ethylene action inhibitor. The major carotenoid pigments in persimmon fruits were ${\beta}$-carotene, lycopene and ${\beta}$-cryptoxanthin. Of them, the lycopene was a pigment, which increased markedly after harvest. UV irradiation increased the contents of ${\beta}$-carotene and lycopene, enhancing the skin color to scarlet. The treatment accelerated however also the softening of fruit flesh. But the softening of UV irradiated fruits could be delayed significantly by pretreatment with 1-MCP without reducing the advantageous effect of UV irradiation on the carotenoid increase.

Enhanced biosynthesis of artemisinin by environmental stresses in Artemisia annua (환경스트레스 처리에 의한 개똥쑥 artemisinin 생합성 증진)

  • Kyung Woon Kim;Cheol Ho Hwang
    • Journal of Plant Biotechnology
    • /
    • v.49 no.4
    • /
    • pp.307-315
    • /
    • 2022
  • Artemisinin is a secondary metabolite of Artemisia annua that shows potent anti-malarial, anti-bacterial, antiviral, and anti-tumor effects. The supply of artemisinin depends on its content in Artemisia annua, in which various environmental factors can affect the plant's biosynthetic yield. In this study, the effects of different light-emitting diode (LED)-irradiation conditions were tested to optimize the germination and growth of Artemisia annua for the enhanced production of artemisinin. Specifically, the ratio between the red and blue lights in the irradiating LED was varied for investigation as follows: [Red : Blue] = [6 : 4], [7 : 3], and [8 : 2]. Furthermore, additional stress factors like UV-B-irradiation (1,395 ㎼/cm2), low temperature (4℃), and dehydration were also explored to induce hormetic expressions of ADS, CYP, and ALDH1, which are essential genes for the biosynthesis of artemisinin. Quantitative polymerase chain reaction (qPCR) was used to analyze the expression levels of the respective genes and their correlation with the specified conditions. [8 : 2] LED-irradiation was the most optimal among the tested conditions for the cultivation of Artemisia annua in terms of both fresh and dry weights post-harvest. For the production of artemisinin, however, [7 : 3] LED-irradiation with dehydration for six hours pre-harvest was the most optimal condition by inducing around twofold enhancement in the biosynthetic yield of artemisinin. As expected, a correlation was observed between the expression levels of the genes and the contents of artemisinin accumulated.