• Title/Summary/Keyword: vanadium permeability

Search Result 17, Processing Time 0.028 seconds

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지)

  • Lee, Ji-Eun;Park, Ye-Rin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

Characteristics of Poly(arylene ether sulfone) Membrane for Vanadium Redox Flow Battery (바나듐 레독스 흐름전지용 Poly(arylene ether sulfone) 막의 특성)

  • Oh, Sung-June;Jeong, Jae-Hyeon;Shin, Yong-Cheol;Lee, Moo-Seok;Lee, Dong-Hoon;Chu, Cheun-Ho;Kim, Young-Sook;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.671-676
    • /
    • 2013
  • Recently, there are many efforts focused on development of Redox Flow Battery (RFB) for large energy storage system. Economical hydrocarbon membranes alternative to fluorinated membranes for RFB membrane are receiving attention. In this study, characteristics of poly(arylene ether sulfone) (PAES) were compared with expensive fluorinated membrane at VRB (Vanadium Redox Flow Battery) operation condition. Permeability of vanadium ion through membrane, ion exchange capacity (IEC), change of OCV, swelling, charge-discharge curves and energy efficiency were measured. PAES membrane showed lower permeability of vanadium ion, higher IEC and then higher energy efficiency compared with Nafion 117 membranes.

Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application

  • Park, Min-A;Shim, Joonmok;Park, Se-Kook;Jeon, Jae-Deok;Jin, Chang-Soo;Lee, Ki Bong;Shin, Kyoung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1651-1655
    • /
    • 2013
  • Anion exchange membranes for a vanadium redox flow battery (VRB) were prepared by pore-filling on a PE substrate with the copolymerization of vinylbenzyl chloride (VBC) and glycidyl methacrylate (GMA). The ion exchange capacity, water uptake and weight gain ratio were increased with a similar tendency up to 65% of GMA content, indicating that the monomer improved the pore-filling degree and membrane properties. The vanadium ion permeability and open-circuit voltage were also investigated. The permeability of the VG65 membrane was only $1.23{\times}10^{-7}\;cm^2\;min^{-1}$ compared to $17.9{\times}10^{-7}\;cm^2\;min^{-1}$ for Nafion 117 and $1.8{\times}10^{-7}\;cm^2\;min^{-1}$ for AMV. Consequently, a VRB single cell using the prepared membrane showed higher energy efficiency (over 80%) of up to 100 cycles compared to the commercial membranes, Nafion 117 (ca. 58%) and AMV (ca. 70%).

Recent Advance on Composite Membrane Based Vanadium Redox Flow Battery (복합막 기반 바나듐 레독스 흐름 전지의 최근 발전)

  • Kyobin Yoo;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.233-239
    • /
    • 2023
  • The transport properties of membranes used in vanadium redox flow batteries (VRFB) are fundamental in battery performance. High proton conductivity and low vanadium ion permeability must be achieved to achieve high battery performance. However, there is a trade-off relationship between proton conductivity and vanadium ion permeability. So, solving this trade-off relationship is crucial in VRFB development. Also, maintaining high coulombic efficiency, voltage efficiency, and energy efficiency is essential for high-performing VRFB. Recently, various attempts have been made, primarily on composite membranes and SPEEK membranes, to overcome the existing limit of Nafion membranes. VRFB is an essential class of rechargeable battery in composite membranes reviewed here.

The Role of Vanadium Complexes with Glyme Ligands in Suppressing Vanadium Crossover for Vanadium Redox Flow Batteries

  • Jungho Lee;Jingyu Park;Kwang-Ho Ha;Hyeonseok Moon;Eun Ji Joo;Kyu Tae Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2023
  • Vanadium redox flow batteries (VRFBs) have been considered one of promising power sources for large scale energy storage systems (ESS) because of their excellent cycle performance and good safety. However, VRFBs still have a few challenging issues, such as poor Coulombic efficiency due to vanadium crossover between catholyte and anolyte, although recent efforts have shown promise in electrochemical performance. Herein, the vanadium complexes with various glyme ligands have been examined as active materials to suppress vanadium crossover between catholyte and anolyte, thus improving the Coulombic efficiency of VRFBs. The conventional Nafion membrane has a channel size of ca. 10 Å, whereas vanadium cation species are small compared to the Nafion membrane channel. For this reason, vanadium cations can permeate through the Nafion membrane, resulting in significant vanadium crossover during cycling, although the Nafion membrane is a kind of ion-selective membrane. In this regard, various glyme additives, such as 1,2-dimethoxyethane (monoglyme), diethylene glycol dimethyl ether (diglyme), and tetraethylene glycol dimethyl ether (tetraglyme) have been examined as complexing agents for vanadium cations to increase the size of vanadium-ligand complexes in electrolytes. Since the size of vanadium-glyme complexes is proportional to the chain length of glymes, the vanadium permeability of the Nafion membrane decreases with increasing the chain length of glymes. As a result, the vanadium complexes with tetraglyme shows the excellent electrochemical performance of VRFBs, such as stable capacity retention (90.4% after 100 cycles) and high Coulombic efficiency (98.2% over 100 cycles).

Research Trend of Polymeric Ion-Exchange Membrane for Vanadium Redox Flow Battery (바나듐계 레독스 흐름 전지용 고분자 이온교환막의 연구개발 동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.285-300
    • /
    • 2012
  • Vanadium redox flow battery is believed to be one of important energy storage technologies, because it has many advantages, including long cycle life, high energy efficiency, low cost of maintenance, and environmental friendship. As one of the key components of vanadium redox flow battery system, an ion exchange membrane is required to prevent cross-mixing of the positive and negative electrolytes while allowing ionic continuity. However, ion exchange membrane such as Nafion using in VRBs still face some challenges in meeting performance and cost requirements for broad penetration. Therefore, to resolve these problems, developed various ion exchange membranes are investigated and compared with Nafion membranes in terms of their performance in vanadium redox flow battery.

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.

Origin of Variation of the Initial Permeability of Manganese-Zinc Ferrite Polycrystals with Additives (Mn-Zn 페라이트 다결정의 첨가물에 따른 초투자율의 변화 기구)

  • Byeon, Sun-Cheon;Byeon, Tae-Yeong;Go, Gyeong-Hyeon;Hong, Guk-Seon
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.758-762
    • /
    • 1997
  • 52mol% Fe$_{2}$O$_{3}$, 26mol% MnO의 조성에서 calcium과 vanadium의 동시첨가에 의한 투자율의 변화원인을 살펴보았다. 초투자율은 첨가물의 농도가 커짐에 따라 감사하였으나 소결체의 밀도나 입자크기는 증가하였으므로 초투자율의 변화는 미세구조의 변화로는 설명되지 않았다. 전기비저항은 첨가물의 농도가 증가함에 따라 증가하였으며 이는 입계의 고저항층의 생성과 vanadium ion에 의한 Fe$^{2+}$이온의 산화로 설명되었다. 첨가물의 농도가 증가함에 따라, 초투자율의 제 2차 최대치가 나타나지 않는 것과 초투자율이 감소하는 것으로부터, 결정자기이방성 상수의 값은 음으로 커짐을 알 수 있었다. 투자육의 온도의존성과 비저항의 변화로부터, 첨가물의 농도에 따른 상온 초투자율의 감소는 Fe$^{2+}$ 이온 농도의 감소에 따른 결정자기이방성 상수의 증가에 의한 효과와 입계에 유리질이 생겨 자벽이 쉽게 이동하지 못하는 효과 때문인 것으로 판단되었다.

  • PDF

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study (산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구)

  • Lee, Kwan Ju;Chu, Young Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.

Preparation of an Anion Exchange Membrane Using the Blending Polymer of Poly(ether sulfone) (PES) and Poly(phenylene sulfide sulfone) (PPSS) (폴리에테르설폰-폴리페닐렌설파이드설폰 블렌딩 고분자를 이용한 음이온교환막의 제조)

  • Lee, Kyung-Han;Han, Joo-Young;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.3
    • /
    • pp.155-163
    • /
    • 2019
  • The anion exchange membrane using the blending polymer of poly(ether sulfone) and poly(phenylene sulfide sulfone) was prepared. It was confirmed by EDXS and FT-IR analysis that the prepared anion exchange membrane had the -N- as an anion exchange group. The ionic conductivity in 1 mol/L $H_2SO_4$ aqueous solution was measured. The ionic conductivity of the prepared anion exchange membrane was 0.015~0.083 S/cm, and had a high value compared with AFN and APS as a commercial anion exchange membrane. Permeabilities of the vanadium ions through the prepared anion exchange membrane were tested to evaluate the possibility as a separator in vanadium redox flow battery. Vanadium ion permeation rate in the prepared anion exchange membrane had a low value compared with Nafion 117 as a commercial cation exchange and AFN as a commercial anion exchange membrane.