• Title/Summary/Keyword: vanadium substitution

Search Result 14, Processing Time 0.031 seconds

Crystallographic and Magnetic Properties of Li0.7Co0.2Ti0.2V0.2Fe1.7O4 Ferrite

  • Chae, Kwang-Pyo;Kwon, Woo-Hyun;Lee, Jae-Gwang
    • Journal of Magnetics
    • /
    • v.15 no.1
    • /
    • pp.25-28
    • /
    • 2010
  • This study examined the crystallographic and magnetic properties of vanadium-substituted lithium cobalt titanium ferrite, $Li_{0.7}Co_{0.2}Ti_{0.2}V_{0.2}Fe_{1.7}O_4$. Ferrite was synthesized using a conventional ceramic method. The samples annealed below $1040^{\circ}C$ showed X-ray diffraction peaks for spinel and other phases. However, the sample annealed above $1040^{\circ}C$ showed a single spinel phase. The lattice constant of the sample was $8.351\;{\AA}$, which was relatively unaffected by vanadium-substitution. The average grain size after vanadium-substitution was $13.90\;{\mu}m$, as determined by scanning electron microscopy. The M$\ddot{o}$ssbauer spectrum could be fitted to two Zeeman sextets, which is the typical spinel ferrite spectra of $Fe^{3+}$ with A and B sites, and one doublet. From the absorption area ratio of the M$\ddot{o}$ssbauer spectrum, the cation distribution was found to be ($Co_{0.2}V_{0.2}Fe_{0.6})[Li_{0.7}Ti_{0.2}Fe_{1.1}]O_4$. Vibrating sample magnetometry revealed a saturation magnetization and coercivity of 36.9 emu/g and 88.6 Oe, respectively, which were decreased by vanadium-substitution.

Synthesis and Thermoelectric Properties of the B-Site Substituted SrTiO3 with Vanadium

  • Khan, Tamal Tahsin;Mahmud, Iqbal;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.416-421
    • /
    • 2017
  • V-substituted $SrTiO_3$ thermoelectric oxide materials were fabricated by the conventional solid state reaction method. From X-ray diffraction pattern analysis, it can be clearly seen that almost every vanadium atom incorporated into the $SrTiO_3$ provided charge carriers. The electrical conductivity ${\sigma}$, Seebeck coefficient S, and thermal conductivity k were investigated in a high temperature regime above 1000 K. The addition of vanadium significantly reduced the thermal conductivity and enhanced the Seebeck coefficient, as well as the electrical conductivity, thus enhancing the ZT value. A maximum ZT value of 0.084 at 673 K was observed for the sample with 1.0 mole% of vanadium substitution. In this study, the reason for the enhanced thermoelectric properties via vanadium addition was also investigated.

Preparation and Catalytic Properties of Vanadium-Containing MFI Type Zeolite (바나듐 함유 MFI형 제올라이트의 제조 및 촉매적 특성)

  • Kim, Geon Joong;Ko, Wan Suk;Cho, Byung Rin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.361-372
    • /
    • 1994
  • Vanadium containing MFI type zeolites have been prepared hydrothermally or by the impregnation method with $NH_4VO_3$ solution after dealumination of HZSM-5. Incorporation of vanadium into the framework of zeolite has been demonstrated by XRD, DTA, FT-IR and ESR analyses. Upon $NH_4VO_3$ impregnation and calcination of dealuminated zeolite, vanadium substitution into the framework could be performed like a hydrothermally synthesized zeolite. Vanadium in zeolite is able to pass redox cycles at high temperatures, and it is shown that vanadium is probably fixed and atomically dispersed in the structure of zeolite. The catalytic benzene hydroxylation, hexanes and alcohols oxidation were used for evaluating the properties of vanadium incorporated MFI zeolite.

  • PDF

The Influence of Vanadium Addition on Fracture Behavior and Martensite Substructure in a Ni-36.5at.%Al Alloy (Ni-36.5at.%Al 합금에서 V 첨가가 파괴거동 및 마르텐사이트 내부조직에 미치는 영향)

  • Kim, Young Do;Choi, Ju;Wayman, C. Marvin
    • Analytical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.203-211
    • /
    • 1992
  • Fracture behavior and martensite substructure of Ni-36.5at.%Al alloy were investigated with the addition of vanadium which is known as scavenging element of grain boundary. The fracture surfaces were examined by scanning electron microscopy and the EDX spectrometer was applied for composition analysis of fracture surfaces. The substructure of martensite was studied by transmission electron microscopy. By addition of vanadium, fracture surfaces show mixed modes of intergranular and transgranular fracture and more Al content is found on the grain boundaries. For Ni-36.5at.%Al alloy, the planar faults observed in the martensite plates are the internal twins. By increasing the vanadium content, the modulated structure with stacking faults and dislocations dominates while the twinned martensite disappears. The stacking fault is determined to be extrinsic due to the substitution of V for Al. It is concluded that the segregation of sulfur on the high-energy state stacking fault area suppresses the intergranular fracture.

  • PDF

Hydrothermal crystallization and secondary synthesis of vanadium containing zeolites (바나듐함유 제올라이트의 수열결정화 및 2차처리합성)

  • Kim, Geon-Joong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.437-448
    • /
    • 1997
  • The substitution of vanadium atoms into the zeolite framework structure could be applied to the large pore zeolites by means of modified treatments as well as direct hydrothermal synthesis. The incorporation of V into the zeolite framework was demonstrated by instrumental analysis techniques. The result of X-ray diffraction analysis showed that the unit cell parameters increased after incorporation of vanadium into the zeolitic lattice, indicating that the replacement of Si by the larger V atoms could cause a slight expansion in the unit cell. In addition, the results of FTIR, Uv-Vis and Si-MAS-NMR spectra strongly support the incorporation of V into the zeolite framework. Acid leaching of aluminum in zeolites can provide a vacant position in the lattice for the insertion of vansdium by secondary hydrothermal treatment.

  • PDF

Substitutions of coloring ions and their effects on wagnerite pigments for cetamic glazes (도자기 유약용 wagnerite의 합성 및 발색원소의 영향)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.160-168
    • /
    • 1998
  • In order to investigate the color variation and the solubility limit in wagnerites by metal ion substitution, wagnerite ($A_2XO_4Z$) was synthesized and then, substituted by coloring metal ions, especially $CO^{2+},Ni^{2+}$ and $Cu^{2+}$ ions. When calcium was replaced with Mg, Co, Ni and Cu divalent ions, solid solutions were formed with a limited solubility. Single phase wagnerites were synthesized by the substitution of Ca with Mg and Co, and their colors were white and purple, respectively. Substitutions with $Li^+$ were succeeded in the specific composition and the substitution of vanadium for $X^{5+}$ were attempted, resulting in the wagnerites of dark purple, dark gold and light yellow colors. The substitution of chlorine was, also, attmepted for the fluorine site.

  • PDF

The Electronic and Thermoelectric Properties of Si1-xVx Alloys from First Principles

  • Ramanathan, Amall Ahmed;Khalifeh, Jamil Mahmoud
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.105-109
    • /
    • 2017
  • The effect of temperature and vanadium metal concentration on the electronic and thermoelectric properties of Si in the diamond cubic structure has been investigated using a combination of density functional theory simulations and the semi classical Boltzmann's theory. The BotzTrap code within the constant relaxation time approximation has been used to obtain the Seebeck coefficient and other transport properties of interest for alloys of the structure $Si_{1-x}V_x$, where x is 0, 0.125, 0.25, 0.375, and 0.5. The thermoelectric properties have been extracted for a temperature range of 300 K to 1,000 K. The general trend with V atom substitution for Si causes the Seeback coefficient to increase and the thermal conductivity to decrease for the various alloys. The optimum values are for $Si_5V_3$ and $Si_4V_4$ alloys for charge carrier concentrations of $10^{21}cm^{-3}$ in the mid temperature range of 500~800 K. This is a very desirable effect for a promising thermoelectric and the figure of merit ZT approaches 0.2 at 600 K for the p-type $Si_5V_3$ alloy.

Microstructure and Electrical Properties of Vanadium-doped ${Bi_4}{Ti_3}{O_{12}}$ Thin Films Prepared by Sol-gel Method (졸-겔법으로 성장시킨 바나듐이 도핑된 ${Bi_4}{Ti_3}{O_{12}}$ 박막의 미세구조 및 전기적 특성)

  • Kim, Jong-Guk;Kim, Sang-Su;Choe, Eun-Gyeong;Kim, Jin-Heung;Song, Tae-Gwon;Kim, In-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.960-964
    • /
    • 2001
  • $Bi_{3.99}Ti_{2.97}V_{0.03}O_{12}$ (BTV) thin films with 3 mol% vanadium doping were Prepared on $Pt/Ti/SiO_2/Si$ substrate by sol-gel method. X-ray diffraction analysis indicated that single-phase layered perovskite were obtained and preferred orientation was not observed. Under the annealing temperature at $600^{\circ}C$, the surface morphology of the BTV thin films had fine-rounded particles and then changed plate-like at $650^{\circ}C$ and $700^{\circ}C$. The remanent polarization $(2P_r)$ and coercive field $(2E_c)$ of $700^{\circ}C$ annealed BTV thin film were 25 $\mu$C/cm$^2$ and 116 kV/cm, respectively. In addition, BTV thin film showed little polarization fatigue during $10_9$ switching cycles. These improved ferroelectric properties were attributed to the increased rattling space and reduced oxygen vacancies by substitution $Ti^{4+}$ ion (68 pm) with smaller $V^{5+}$ ion (59 pm). The dielectric constant and loss were measured 130 and 0.03 at 10 kHz, respectively.

  • PDF

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF