• Title/Summary/Keyword: vapor treatment

Search Result 438, Processing Time 0.024 seconds

The Hemato-Chemical Effect of Acetic Acid Treatment on Carbon Monooxide Intoxication (일산화탄소 중독시 식초산이 혈액 반응에 미치는 영향)

  • Yoon, Youn-Hwa;Chung, Yong;Kwon, Sook-Pyo
    • YAKHAK HOEJI
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 1980
  • CO-intoxication is a serious problem in public health since the coal briquette has been used as one of fuels from 1950's. It has been discussed that the treatment with acetic acid vapor may be effective for CO-intoxication. This study was undertaken to investigate the action of acetic acid therapy, comparing with the spontaneous air treatment The acetic acid vapor was introduced to the blood combined with CO (in vivo and in vitro). The dissociation of COHb, the production of COHb, the levels of Hb and adrenaline and nor-adrenaline were measured. The effect of acetic acid vapor on dissociation of COHb was about 7-9% more effective than the spontaneous air treatment. The acetic acid vapor treatment for the dissociation of COHb was similar effect to the spontaneous air treatment. In an experiment of the combining CO gas with blood, the acetic acid vapor treatment was less effective in the production of COHb than that of spontaneous air treatment. Treatment with the acetic acid vapor to rabbit intoxicated with CO gas induced a little amount of Hb in blood comparing with the spontaneous air treatment. But, it is not a significant increment statistically. By the acetic acid vapor treatment after CO gas intoxication the adrenaline was increased and noradrenaline was decreased. With these results, it is assumed that the effect of acetic acid therapy on CO-gas intoxication would be caused by inductions of Hb and adrenaline and to be reduction of nor-adrenaline.

  • PDF

Fabrication of a Porous Carbon Surface Using Ethanol Vapor Treatment (에탄올 증기 처리를 통한 다공성 탄소 표면 제작)

  • Im, Doyeon;Kim, Geon Hwee;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.244-248
    • /
    • 2022
  • Recently, several studies on the development of superhydrophobic surfaces using various nano-sized carbon-based materials have been conducted. The superhydrophobic surfaces developed using carbon soot have advantages such as low processing cost and remarkable physical and chemical properties. However, their durability is low. To address this problem, in this study, a superhydrophobic surface with high durability and a multilayer structure was fabricated using ethanol vapor treatment. Candle soot was deposited on an aluminum substrate coated with paraffin wax, and a micro-nano multilayer structure with a size of several micrometers was fabricated via ethanol vapor treatment. The fabricated superhydrophobic surface was confirmed to have a contact angle of at least 156° and high durability. Finally, it was confirmed that ethanol vapor not only changed the nanostructure of carbon but also affected the durability of the structure.

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part I

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that HF treatment is not desirable for the synthesis of a high quality PEDOT thin film via vapor phase polymerization method. Rather, sole treatment with plasma noticeably improved the quality of APS-SAM on glass surface. As a result, a highly dense and smooth PEDOT thin film was grown on uniform oxidant film-coated APS monolayer surface.

Effect of Vapor-dam Treatment and End-coating Treatment on the air Circulating oven Drying Characteristics of Green Stocks for Korean Traditional Double-headed Drum (수증기댐처리 및 엔드코팅처리가 장고용 초갈이재의 송풍오븐건조 특성에 미치는 영향)

  • Lee, Nam-Ho;Jung, Hee-Suk;Hayashi, Kazuo;Li, Cheng-Yuan;Zhao, Xue-Feng;Hwang, Ui-Do
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.17-26
    • /
    • 2007
  • This study was conducted to investigate the effects of End-coating (CO) treatment and Vapor-dam (V) treatment on the air circulating oven drying characteristics of green stock (Paulownia tomentosa) for drum. The reduction of the weight of specimens was greatly displayed in order of control (C-NC) treatment, End-coating (C-CO) treatment, Vapor-dam (V-NC) treatment and Vapor-dam/End-coating (V-CO) treatment after the beginning of drying. The V-CO treated specimen showed smoother temperature gradient compared with the V-NC treated specimen throughout whole drying stage and there was little temperature gradient between the inner and outer part of the cylindrical stock. The C-CO treated specimen showed higher value of vapor pressure in both the inner and outer part of the cylindrical stock until the middle stage of drying, while after the middle stage of drying only the inner part of the cylindrical stock presented higher value compared with the C-NC treated specimen. The distribution of the absolute vapor pressure of the V-CO treated specimen was similar to that of the V-NC treated specimen during the initial stage of drying. However, the former showed a large distribution in order of the hollow, the outer part, the inner part of the cylindrical stock after the initial stage of drying, which was entirely different model of distribution from that of the V-NC treated specimen. Surface checks and ring failures were not observed for all of the specimens, while end checks were severely occurred for the C-NC treated specimen and the V-NC treated specimen.

A Study on the Bleaching Properties of Silk Fabric Using Vapor Type Ozone Treatment (기상 오존처리법을 이용한 견직물의 표백성에 관한 연구)

  • Kim, Jung-Min;Lee, Mun-Soo
    • Fashion & Textile Research Journal
    • /
    • v.6 no.4
    • /
    • pp.511-514
    • /
    • 2004
  • We studied on the bleaching properties of silk fabric by vapor type ozone processing using ozone's strong oxidation instead of 28% $H_2O_2$ chemical treatment. When vapor type ozone processing was directly treated to fabrics retaining water to 50~70% pick up ratio, high concentration ozone was generated 14,000ppm(168 mg/h) approximately and finally its bleaching improved. The fabric's bleaching effect was improved because vapor type ozone generated the highest decomposition to oxidation of surface and inter molecules. The experiment revealed that fabric's bleaching was improved by change of the pick-up ratio of vapor type ozone processing. However, tensile strength and elongation were reduced by increase of time, and the time that was assumed as the most optimized time to minimize the reduction of fabric's tensile strength and elongation as well as maximizing the fabric's bleaching was 30 minutes.

A Study on the Softness Properties of Polyester Fabric Using Vapor Type Ozone Treatment (기상 오존처리법을 이용한 폴리에스테르직물의 유연성에 관한 연구)

  • Lee, Mun-Soo;Kwon, Yoon-Jeong
    • Fashion & Textile Research Journal
    • /
    • v.3 no.4
    • /
    • pp.362-366
    • /
    • 2001
  • We studied on the softness properties of polyester fabric by vapor type ozone processing using ozone's strong oxidation instead of 25% NaOH chemical treatment. When vapor type ozone processing was directly treated to fabrics retaining water to 40% pick up ratio, high concentration ozone was generated oxidation of 3~4% approximately in polyester fabrics and finally its softness improved. The fabric's softness effect was improved because vapor type ozone generated the highest decomposition to oxidation of surface and inter molecules. The experiment revealed that fabric's softness was improved by change of the time of vapor type ozone processing. However, tensile strength and elongation were reduced by increase in time, 60 minute was assumed as the most optimized time to minimize the reduction of fabric's tensile strength and elongation as well as maximizing the fabric's softness.

  • PDF

Effect of HF and Plasma Treated Glass Surface on Vapor Phase-Polymerized Poly(3,4-ethylenedioxythiophene) Thin Film : Part II

  • Lee, Joonwoo;Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.6 no.4
    • /
    • pp.215-219
    • /
    • 2013
  • In this study, in order to investigate how consecutive treatments of glass surface with HF acid and water vapor/Ar plasma affect the quality of 3-aminopropyltriethoxysilane self-assembled monolayer (APS-SAM), poly(3,4-ethylenedioxythiophene) (PEDOT) thin films were vapor phase-polymerized immediately after spin coating of FeCl3 and poly-urethane diol-mixed oxidant solution on the monolayer surfaces prepared at various treatment conditions. For the film characterization, various poweful tools were used, e.g., FE-SEM, an optical microscope, four point probe, and a contact angle analyzer. The characterization revealed that a well prepared APS-SAM on a glass surface treated with water vapor/Ar plasma is very useful for uniform coating of FeCl3 and DUDO mixed oxidant solution, regardless of HF treatment. On the other hand, a bare glass surface without APS-SAM but treated with HF and water vapor/Ar plasma generally led to a very poor oxidant film. As a result, PEDOT films vapor phase-polymerized on APS-SAM surfaces are far superior to those on bare glass surfaces in the quality and electrical characteristics aspects.

Solvent-vapor surface treatment induced performance improvement of organic solar cells

  • Kim, Chang-Su;Kang, Jae-Wook;Kim, Do-Geun;Kim, Jong-Kuk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.42-43
    • /
    • 2011
  • Improvement of the photovoltaic efficiency via exposure of organic solar cells to solvent-vapor at room temperature is reported. Carbon disulfide ($CS_2$) vapor treatment can induce Poly(3-hexylthiophene) (P3HT) self-organization into ordered structure leading to enhanced hole transport and light absorption. The power conversion efficiency (PCE) of the organic solar cells can be increased from 0.89 to 1.67% by solvent-vapor treatment.

  • PDF

Air Circulating Oven-drying Characteristics of Hollowed Round-post for Korean Main Conifer Species Part 3: Effects of Water-vapor Dam and Heartwood Coating Treatments

  • Lee, Nam-Ho;Zhao, Xue-Feng;Shin, Ik-Hyun;Lee, Chang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.101-111
    • /
    • 2014
  • In this study the effect of heartwood-coating (HCO), vapor-dam (VD), bark-remaining (BR) and bark-remaining-coating (BRC) treatments on the air circulating oven-drying characteristics of Japanese larch hollowed round-post was evaluated. The drying times of the hollowed round-posts for control, VD, HCO and BR specimens were 72, 168, 204 and 240 hours, respectively, from the initial MC to about 8% MC, which was recommended as the indoor in-use MC. The temperature in the hole of the VD specimen was lower than that of wood and the difference between air temperature in the hole and wood temperature became large during drying period. The vapor pressure of air in the hole was higher than that of inside wood for all specimens except VD specimen. The surface checks on all specimens were observed in increasing order of BR, BRC, UC, HCO and VD specimens.

Production of Nanosized WC Powder by Vapor Phase Reaction

  • Cho, Gi-Chul;Lee, Gil-Geun;Ha, Gook-Hyun;Kim, Byung-Kee
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.625-626
    • /
    • 2006
  • In the present study, the focus is on the synthesis of nanosized WC powder by the chemical vapor condensation proces. The synthesized W-C system powder by the CVC process shows W2C, W, WO3 phases and can not shows WC phase. After recarburization heat treatment under mixture gas atmosphere of argon and hydrogen gases, the synthesized W-C system powder fully transformed to the pure WC. The synthesized WC powder after recarburization heat treatment has an average particle size of 20 nm. The nano-sized WC powder can be prepared by the combination of the CVC process and heat treatment methods.

  • PDF