• Title/Summary/Keyword: vertical chord ratio

Search Result 11, Processing Time 0.034 seconds

A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed (다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계)

  • 서영택;오철수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Segmented Douglas-Peucker Algorithm Based on the Node Importance

  • Wang, Xiaofei;Yang, Wei;Liu, Yan;Sun, Rui;Hu, Jun;Yang, Longcheng;Hou, Boyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1562-1578
    • /
    • 2020
  • Vector data compression algorithm can meet requirements of different levels and scales by reducing the data amount of vector graphics, so as to reduce the transmission, processing time and storage overhead of data. In view of the fact that large threshold leading to comparatively large error in Douglas-Peucker vector data compression algorithm, which has difficulty in maintaining the uncertainty of shape features and threshold selection, a segmented Douglas-Peucker algorithm based on node importance is proposed. Firstly, the algorithm uses the vertical chord ratio as the main feature to detect and extract the critical points with large contribution to the shape of the curve, so as to ensure its basic shape. Then, combined with the radial distance constraint, it selects the maximum point as the critical point, and introduces the threshold related to the scale to merge and adjust the critical points, so as to realize local feature extraction between two critical points to meet the requirements in accuracy. Finally, through a large number of different vector data sets, the improved algorithm is analyzed and evaluated from qualitative and quantitative aspects. Experimental results indicate that the improved vector data compression algorithm is better than Douglas-Peucker algorithm in shape retention, compression error, results simplification and time efficiency.

An Experimental Study on the Prediction of Yield Load Using Ring Analysis Method in Circular Tubular X-Type Cross Sections (링해석법에 의한 X형 강관 격점부의 항복하중 예측에 관한 실험적 연구)

  • Park, Il Min;Na, Seon Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.1 s.38
    • /
    • pp.43-54
    • /
    • 1999
  • The divergence connection between steel circular tubes is widely used in such structures as factory facilities, steel circular hollow section truss, and off-shore tower. Steel circular hollow section (SCHS) have close section, and it makes their per-unit production expense higher than open sectioned products like L-shape, H-shape steels, but the sectional resistance of SCHS against vertical compression and torsion is very high. Despite the structural merits of SCHS, however, many engineers dislike to use them in their design because of uncertainty regarding the stress distribution and deformation behavior at their connections. Therefore, this thesis dealt with X-type connections, the most common forms of connection, and studied their load-deformation relationship. It observed how to show the load-deformation relationship at steel circular tube connections according to the diameter-thickness ratio (D/T) of the chord and diameter of branch-diameter of chord ratio (d/D) and suggested prediction yield load using by ring analysis method.

  • PDF

A Basic Study on the Desist of Vertical Axis Darrieus Turbine for Wind-Power Generating System (수직축 Darrieus 풍력발전 시스템의 설계에 관한 기초연구)

  • Seo, Young-Taek;Kim, Gi-Seung;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.82-84
    • /
    • 1994
  • This paper presents a design of vertical axis Darrieus wind turbine for wind-power generating system. The wind turbine consists of two troposkien blades, diameter is 10m approximately, and chord length 380mm, tip ratio speed 4. The design of turbine is laid for the main data of rated wind speed 10m/s, turbine speed 78rpm, the generating power is estimated to 25kW, and this is contorted to commercial power line by means of three phase synchronous generator-inverter system.

  • PDF

Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames (철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석)

  • Lee, Cheol-Ho;Kim, Seon-Woong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.698-703
    • /
    • 2007
  • A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piecewise linear model which can reasonably describe the vertical, resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.

  • PDF

Characteristics on the chord length and cutting ratio of rear side blade for the offshore vertical axis wind turbine (날개 길이 및 후면부 절개 비율에 따른 해상용 수직축 풍력발전기 특성 평가)

  • Kim, Namhun;Kim, Kyenogsoo;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.64.2-64.2
    • /
    • 2011
  • 해상용(offshore) 부이(bouy)는 선박의 항로를 지시하거나 암초, 침몰선 등 항해상의 위험물을 알리기 위해 사용 되며, 야간을 위해 등화장치를 설치한 것을 등부표라 한다. 등부표는 야간 점등을 위해 자체 전력 생산시스템을 갖추고 있으나, 기존의 태양광을 이용한 전력 시스템은 해상 환경에 따른 제약이 많아 안정적인 운영이 어려우므로 풍력 발전기(wind turbine)를 이용한 하이브리드 전력 생산시스템으로의 전환이 필요한 실정이다. 선행 연구는 수직축(vertical axis) 양력(lift) 및 항력(drag) 조합형 해상용 풍력발전기 개발에 대하여 수행하였으나, 본 논문에서는 풍력발전기의 효율 증대를 위해 날개 길이 및 후면부 절개 비율에 따른 수직축 풍력발전기 특성에 대하여 연구하였다. 풍력발전기의 설치조건은 선행연구와 동일하게 등명구 교체 작업을 원활하게 하기 위하여 설치 공간을 $1m{\times}1m$로 제한하였으며, 등부표의 구조를 고려하여 최상단에 지지 프레임을 별도로 구성 하였다. 풍력발전기의 블레이드는 0.6mm의 알루미늄 박판을 절곡하여 NACA 4418의 외형을 가지도록 제작하였고, 블레이드 설계 시 에어포일의 후면부를 절개하여 양력과 항력을 효과적으로 이용하며 저속과 고속에서 높은 효율을 가지도록 설계하였다. 또한 블레이드 날개 길이와 후면부 절개 비율에 따른 풍력발전기 특성을 실험을 통해 비교하여 기준 해상 풍속에서 블레이드 설계 최적화를 수행하였으며 비교 모델 대비 약32% 발전량이 증가한 설계변수 조합을 구하였다.

  • PDF

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

The necessary number of profile lines for the analysis of concrete fracture surfaces

  • Konkol, Janusz;Prokopski, Grzegorz
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.565-576
    • /
    • 2007
  • The article describes a technique for the measurement of the level of complexity of fracture surfaces by the method of vertical sections, and a performed statistical analysis of the effect of profile lines on the fractographic and fractal parameters of fractures, i.e. the profile line development factor, $R_L$, and the fracture surface development factor, $R_S$, (as defined by the cycloid method), as well as the fractal dimension, $D_C$, (as determined by the chord method), and the fractal dimension, $D_{BC}$, (as determined by the box method). The above-mentioned parameters were determined for fracture surfaces of basalt and gravel concretes, respectively, which had previously been subjected to fracture toughness tests. The concretes were made from mixtures of a water/cement ratio ranging from 0.41 to 0.61 and with a variable fraction of coarse aggregate to fine aggregate, $C_{agg.}/F_{agg.}$, in the range from 1.5 to 3.5. Basalt and gravel aggregate of a fraction to maximum 16 mm were used to the tests. Based on the performed analysis it has been established that the necessary number of concrete fracture profile lines, which assures the reliability of obtained testing results, should amount to 12.

Study on Design of Darrieus-type Tidal Stream Turbine Using Parametric Study (파라메트릭 스터디를 통한 조류발전용 다리우스 터빈의 설계연구)

  • Han, Jun-Sun;Hyun, Beom-Soo;Choi, Da-Hye;Mo, Jang-Oh;Kim, Moon-Chan;Rhee, Shin-Hyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • This paper deals with the performance analysis and design of the Darrieus-type vertical axis turbine to evaluate the effect of key design parameters such as number of blade, blade chord, pitch and camber. The commercial CFD software FLUENT was employed as an unsteady Reynolds-Averaged Navier-Stokes (RANS) solver with k-e turbulent model. Grid system was modelled by GAMBIT. Basic numerical methodology of the present study is appeared in Jung et al. (2009). Two-dimensional analysis was mostly adopted to avoid the barrier of massive calculation required for parametric study. It was found that the highly efficient turbine model could be designed through the optimization of design parametrrs.

Simplified Nonlinear Static Progressive Collapse Analysis of Steel Moment Frames (철골모멘트골조의 비선형 정적 연쇄붕괴 근사해석)

  • Lee, Cheol Ho;Kim, Seon Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.383-393
    • /
    • 2007
  • A simplified model which incorporates the moment-axial tension interaction of the double-span beams in a column-removed steel frame is presented in this paper. To this end, material and geometric nonlinear parametric finite element analyses were conducted for the double-span beams by changing the beam span to depth ratio and the beam size within some practical ranges. The beam span to depth ratio was shown to be the most influential factor governing the catenary action of the double-span beams. Based on the parametric analysis results, a simplified piece-wise linear model which can reasonably describe the vertical resisting force versus the beam chord rotation relationship was proposed. It was also shown that the proposed method can readily be used for the energy-based progressive collapse analysis of steel moment frames.