• Title/Summary/Keyword: vibrational amplitude

Search Result 54, Processing Time 0.029 seconds

Effects of parameters of a linear dynamic vibration absorber on the vibrational characteristics of damped vibrational systems (선형동흡진기의 매개변수가 감쇠진동계의 진동특성에 미치는 영향)

  • Yoon, Jang-Sang;Lee, Yang-U;Song, Chang-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.4
    • /
    • pp.136-144
    • /
    • 1989
  • This paper presents the vibrational characteristics of linear damped vibrational systems with a linear dynamic absorber. The amplitude ratios of main vibrational system are derived from the equation of motion for the system, and optimal natural frequency ratio and damping ratio of dynamic absorber are obtained by computer simu- lation, which minimize the amplitude ratio of main vibrational system for the whole range of the frequency ratio. And, the effects of the parameters on the amplitude ratios are investigated. As the results, the effect of the natural frequency ratio on the amplitude ratio of main vibrational system is more important than that of the damping ratio of dynamic absorber as damping ratio of main vibrational system becomes larger. For the case of large damping ration of main vibrational system becomes larger. For the case of large damping ratio of main vibration system, the amplitude ratios are not decreased dramationally in spite of inoreasing mass ratio.

  • PDF

Effect of Vibrational Amplitude on Friction and Wear Properties of Magnetorheological Elastomer (진폭에 따른 자기유변탄성체의 마찰 특성 연구)

  • Lian, Chenglong;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.39-43
    • /
    • 2016
  • Magnetorheological elastomers (MREs) are a type of “smart” material, and their properties can be controlled rapidly and reversibly under the influence of an external stimulus. The application of an external magnetic field can change the shear modulus, hardness, and friction coefficient of MREs. The friction can cause vibration; moreover, the vibration can affect friction. The change of friction depends on the relative motion, normal force, roughness of the rubbing surfaces, material type, temperature, lubrication, relative humidity, and vibration condition. As MREs are a type of “smart material,” their friction coefficient can be reduced by applying an external magnetic field—the applications of this feature in engineering have been widely studied. However, the friction properties of MREs under vibration have not been tested to date. In this study, MRE samples and a reciprocating friction tester were fabricated. The friction coefficient was measured to evaluate the friction properties under various vibration conditions; subsequently, the wear depth and wear surface profile of the MRE were observed in order to evaluate the wear properties. The results show that the friction coefficient of the MREs decreased when a magnetic field was applied. Moreover, the friction coefficient decreased when the vibrational amplitudes increased. The wear depth of the MRE also decreased as the vibrational amplitudes increased.

Development of Excitation Table for 2-dimensional Vibrational Micro Cutting (2차원 진동 미세가공을 위한 가진테이블 개발)

  • Kim, Gi-Dae;Lee, Kang-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.62-67
    • /
    • 2012
  • To realize 2-dimensional vibrational micro cutting in milling and drilling, etc. where the tools rotate, it could be a promising way to vibrate a workpiece instead of a rotating tool itself. In this study, an excitation work-table was developed using two piezoelectric materials orthogonally arranged. The trochoidal trajectory of a cutting tool which is necessary for 2D vibrational cutting is enabled in the excitation condition of higher excitation frequency and larger amplitude of vibration and the cutting condition of smaller diameter of cutting tool and lower spindle speed. The various trochoidal trajectories of a cutting tool could be generated in the excitation work-table by adjusting the input voltages to two piezoelectric materials and the phase between the two voltages and the trajectories could be readily used for the 2D vibrational micro cutting.

Analytical Study on Vibrational Properties of Vibro-hammer (진동해머의 진동특성에 대한 해석적 연구)

  • Lee, Seung-Hyun;Kim, Eung-Seok;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3577-3581
    • /
    • 2013
  • In order to analyze a pile constructed by vibro-hammer, vibrational characteristics of vibro-hammer should be investigated first. Analytical studies were conducted in order to investigate vibrational properties of vibro-hammer. It is thought that the concept of acting the spring force to the pile head should be replaced by the concept of considering the lumped mass of the exciter and the pile. For the situation of free vibration, spring force increase with increase of spring constant and the amplitude is little affected by the spring constant. Also for the situation of free vibration, amplitude is inversely proportional to the increase of mass of the exciter and it can be seen that spring force increase with amplitude by the same ratio. It can be seen that directions of the spring force and displacement are opposite to that of rotating mass.

Active Vibration Control of a Composite Beam Using Piezoelectric Films (압전필름을 이용한 복합재료 외팔보의 능동진동제어)

  • Kim, S.H.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.54-62
    • /
    • 1994
  • This paper presents active control methodologies to suppress structural deflections of a composite beam using a distributed piezoelectric-film actuator and sensor. Three types of different controllers are employed to achieve vibration suppression. The controllers are established depending upon the information on the velocity components of the structrue and on the deflection magnitudes as well. They are constant-amplitude controller(CAC), constant-gain mcontroller(CGC), and constant-amplitude-gain controller(CAGC). For the minimization of the residual vibration (chattering in a settled phase), which is the practical shortcoming of the conventional CAC dur to time delay phenomenon of the hardware system, a new control algoritym CAGCis designed by selecting switching constants in an optimal manner with respect to the initial tip deflection and the applied voltage. The experimental investigations of the transient and forced vibration control for the first vibrational mode are undertaken in order to compare the suppression efficiency of each control algorithm. Moreover, simultaneous controllability of various vibrational modes through the proposed scheme is also experimentally verified by pressenting both the transfer function and the phase.

  • PDF

Characteristics of Flow-induced Vibration for CE Type Steam Generator Tube with Various Column and Row Number (CE형 증기발생기 전열관의 행열 변화에 따른 유체유발진동 특성)

  • Ryu, Ki-Wahn;Cho, Bong-Ho;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.927-932
    • /
    • 2002
  • The stability ratio and vibrational amplitude of each tube inside a steam generator have different values. We estimate the characteristics of flow-induced vibration for CE type steam generator with various column and row number of the tube. To obtain the thermal-hydraulic data and stability ratio we use the ATHOS3-MODI and PIAT-FEI/TE code respectively. It turns out that the steam generator has a bounded central zone with the distributed values of the stability ratio and the vibrational amplitude, and those values across the zone boundary become decreased.

  • PDF

Characteristics of Flow-induced Vibration for CE Type Steam Generator Tube with Various Column and Row Number (CE형 증기발생기 튜브의 행열 변화에 따른 유체유발진동 특성)

  • Ryu, Ki-Wahn;Cho, Bong-Ho;Park, Chi-Yong;Park, Su-Ki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.390.2-390
    • /
    • 2002
  • The stability ratio and vibrational amplitude of each tube inside a steam generator have different values. We estimate the characteristics of flow-induced vibration for CE type steam generator with various column and row number of the tube. To obtain the thermal-hydraulic data and stability ratio we use the ATHOS3 and PIAT-FEI/TE code respectively. It turns out that the steam generator has a bounded central zone which the distributed values of the stability ratio and the vibrational amplitude, and those values across the zone boundary become decreased.

  • PDF

A Study on the Effect of Vibration Input toward the Sense of Equilibrium (진동이 평형감각에 미치는 영향에 관한 연구)

  • Jeong S.H.;Piao Y.J.;Lee S.M.;Kwon T.K.;Hong C.U.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.539-542
    • /
    • 2005
  • In this study, we investigated the influence of vibrational stimulation on postural control. To study the effect, the sway of the center of pressure was observed fur two different visual conditions and for three different patterns of vibrational stimulation on plantar area. The two visual conditions were normal condition with visual feedback and blind condition with both eyes closed. The three vibrational stimulations were white noise, constant vibration, and vibration with amplitude modulations (sine curve modulation). The experimental results showed that the sway of the center of pressure distinctively reduced with white noise vibrational stimulation. This result showed that it's possible to use vibrational stimulation for improving the ability of postural control.

  • PDF

Vibrational control of an underactuated mechanical system (작동기가 불충분한 매니퓰레이터의 진동적 제어)

  • Lee, Kang-Ryeol;Hong, Keum-Shik;Lee, Kyo-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.151-154
    • /
    • 1997
  • An open loop vibrational control of underactuated mechanical systems with amplitude and frequency modulations is investigated. The underactuated systems considered in the paper are assumed to have free joints with no brake. The active joints are positioned first by a linearizing control, and then periodic oscillatory inputs are applied to them to move the remaining free joints to their desired states. A systematic way of obtaining averaged systems for the underactuated systems with oscillatory vibrations is developed. A complete solution to the open loop control strategy in terms of determining amplitudes and frequencies for general system is still under investigation. However, a specific control design for 2R manipulator which is obtained the averaging system is demonstrated.

  • PDF

Vibrational Control of an Underactuated Mechanical System: Control Design through Averaging Analysis (비구동관절을 가진 기계시스템의 가진제어: 평균화해석을 통한 제어기의 설계)

  • Hong, Keum-Shik;Yang, Kyung-Jinn
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.385-393
    • /
    • 1999
  • An open loop vibrational control for an underactuated mechanical system with amplitude and frequently modulation is investigated. Since there is no direct external input to an unactuated joint, the dynamic coupling between the actuated and unactuated joints is utilized for controlling the unactuated joint. Feedback linearization has been performed to incorporate fully the known nonlinearities of the underactuated system considered. The actuated joints are firstly positioned to their desired locations, and the periodic oscillatory inputs are applied to the actuated joints to move the remaining unactuated joints to their target positions. The amplitudes and frequencies of the vibrations introduced are determined through averaging analysis. A systematic way of obtaining an averaged system for the underactuated system via a coordinate transformation is developed. A control design example of 2R planer manipulator with a free joint with no brake is provided.

  • PDF