• Title/Summary/Keyword: virtual moving surround

Search Result 6, Processing Time 0.024 seconds

Postural Control During Virtual Moving Surround Stimulation in Patients with Brain Injury (뇌기능 장애 환자의 가상 환경 움직임(Virtual Moving Surround) 자극에 따른 자세 균형 제어)

  • 김연희;최종덕;이성범;김종윤;이석준;박찬희;김남균
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.67-75
    • /
    • 2002
  • The purpose of this study is to assess the ability of balance control in virtual moving surround stimulation using head mount display (HMD) device and force platform in patients with brain injury. Fifteen patients with stroke (mean age 54.47 yrs) and fifteen healthy normal persons participated. COP parameters were obtained total path distance, frequency of anterior-posterior and medial-lateral component by FFT analysis, weight-spectrum analysis in the two different conditions; (1) during comfortable standing with opened or closed eyes, (2) during virtual moving surround stimulation delivered using HMD with four different moving pattern. Moving patterns consisted of close-far, superior-inferior lilting (pitch) , right-left tilting (roll) and horizontal rotation (yaw) movement. In all parameters, the test-retest reliability was high. Also, the construct validity of virtual moving surround stimulation was excellent (p<0.05). A posturographic balance assessment system equiped with virtual moving surround stimulation using HMD is considered clinically useful in evaluation of balance control in patients with brain injury.

  • PDF

Postural Control in Brain Damage Patients According to Moving Surround (뇌기능 장애 환자의 가상영상(Moving Sorround) 자극에 따른 자세 균형 제어)

  • 김연희;최종덕;이성범;김종윤;이석준;박찬희;김남균
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.11a
    • /
    • pp.233-244
    • /
    • 2002
  • The purpose of this study is to assess the ability of balance control in moving surround using head mount device and force platform and to examine the clinical usefulness of COP parameters. Fifteen patients with stroke and healthy persons were participated. COP parameters were obtained as total path distance, frequency of anterior-posterior and medial-lateral component by FFT analysis, weight-spectrum analysis in the two different conditions; (1) in comfortable standing with opened or closed eyes, (2) in virtual moving surround delivered using HMD to four different moving pattern. In virtual moving surround setting, moving pattern was composed of close-far, superior-inferior tilting(pitch), right-left tilting(roll) and horizontal rotation(yaw) movement. In all parameters, the reliebility of COP analysis system was significantly high. Also, the construct validity compared between fifteen patients with stroke and normal persons was excellent in virtual moving surround condition(p

  • PDF

Utilization of Virtual Moving Surround on Static Balance in the Patients With Balance Dysfunction

  • Woo, Young-Keun;Hwang, Ji-Hye;Kim, Yun-Hee;Lee, Peter K.W.;Kim, Nam-Gyun
    • Physical Therapy Korea
    • /
    • v.12 no.4
    • /
    • pp.12-19
    • /
    • 2005
  • The purpose of this study was to investigate the possibility of virtual moving surround (VMS) on static balance in the patients with balance dysfunction. Eighty three subjects who were admitted or treated as an outpatient, or a family member, at the department of rehabilitation unit of university hospital were recruited to participate. Subjects were three groups based on their overall medical status: healthy, diabetic neuropathy and stroke. Each group was tested for static balance with a forceplate during static standing with VMS. The virtual movement was simulated with a head mounted display. The parameters for static balance were total sway path. In this study, the parameters of postural control for patients with diabetic neuropathy and stroke subjects were significantly increased in conditions elicited with the VMS. In the healthy elderly participants, the total sway path was not significantly different under virtual movement conditions. Therefore, VMS could be used in the evaluation and treatment of the patients with balance dysfunction.

  • PDF

Electromyographic Activities of Lower Leg Muscles During Static Balance Control in Normal Adults (정상성인에서 정적 균형 제어 시 다양한 조건에 따른 하퇴 근육 활성도의 특성)

  • Woo, Young-Keun;Park, Ji-Won;Choi, Jong-Duk;Hwang, Ji-Hye;Kim, Yun-Hee
    • Physical Therapy Korea
    • /
    • v.11 no.2
    • /
    • pp.35-45
    • /
    • 2004
  • The purpose of this study was to investigate the correlation and characteristics between electromyographic (EMG) activities of lower leg muscles and the posturographic assessment of static balance control in normal adults. Twenty-four young, healthy adults(12 males, 12 females) participated in the study. Center of pressure (COP) parameters were obtained using force platform as total path distance, total sway area, X mean frequency and Y mean frequency for 20 seconds in the following conditions: (1) comfortable standing with eyes opened or closed, (2) uncomfortable standing (feet together) with eyes opened or closed, (3) virtual moving surround delivered using Head mount display (HMD) with four different moving patterns. The virtual moving patterns consisted of close-far, superior-inferior tilting (pitch), right-left tilting (roll), and horizontal rotation (yaw) movements. Surface electromyographic activites were recorded on the tibialis anterior, peroneus longus, medial and lateral heads of gastrocnemius muscles under each condition. Correlation between the posturographic measures and EMG activities were evaluated. Total path distance and total sway area of COP were significantly increased during uncomfortable standing. EMG activity of tibialis anterior was significantly more during uncomfortable standing and virtual moving surround stimulation than during comfortable standing. Total path distance and sway area of COP during comfortable standing with closed eyes showed significant positive correlation with the EMG activities of the lateral head of gastrocnemius muscle. Total path distances and total sway area of COP during muscle. Total path distances and total sway area of COP during presentation of virtual moving surround also had significant positive correlations with EMG activities of the lateral head of gastrocnemius muscle under close-far movement.

  • PDF

Development of Potential Function Based Path Planning Algorithm for Mobile Robot

  • Lee, Sang-Il;Kim, Myun-Hee;Oh, Kwang-Seuk;Lee, Sang-Ryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2325-2330
    • /
    • 2005
  • A potential field method for solving the problem of path planning based on global and local information for a mobile robot moving among a set of stationary obstacles is described. The concept of various method used path planning is used design a planning strategy. A real human living area is constructed by many moving and imminence obstacles. Home service mobile robot must avoid many obstacles instantly. A path that safe and attraction towards the goal is chosen. The potential function depends on distance from the goal and heuristic function relies on surrounding environments. Three additional combined methods are proposed to apply to human living area, calibration robots position by measured surrounding environment and adapted home service robots. In this work, we proposed the application of various path planning theory to real area, human living. First, we consider potential field method. Potential field method is attractive method, but that method has great problem called local minimum. So we proposed intermediate point in real area. Intermediate point was set in doorframe and between walls there is connect other room or other area. Intermediate point is very efficiency in computing path. That point is able to smaller area, area divided by intermediate point line. The important idea is intermediate point is permanent point until destruction house or apartment house. Second step is move robot with sensing on front of mobile robot. With sensing, mobile robot recognize obstacle and judge moving obstacle. If mobile robot is reach the intermediate point, robot sensing the surround of point. Mobile robot has data about intermediate point, so mobile robot is able to calibration robots position and direction. Third, we gave uncertainty to robot and obstacles. Because, mobile robot was motion and sensing ability is not enough to control. Robot and obstacle have uncertainty. So, mobile robot planed safe path planning to collision free. Finally, escape local minimum, that has possibility occur robot do not work. Local minimum problem solved by virtual obstacle method. Next is some supposition in real living area.

  • PDF

Preliminary Design and Implementation of 3D Sound Play Interface for Graphic Contents Developer (그래픽 콘텐츠 개발자를 위한 입체음 재생 인터페이스 기본 설계 및 구현)

  • Won, Yong-Tae;Jang, Bong-Seog;Ahn, Dong-Soon;Kwak, Hoon-Sung
    • Journal of Digital Contents Society
    • /
    • v.9 no.2
    • /
    • pp.203-211
    • /
    • 2008
  • Due to the advance of H/W and S/W techniques to play 3D sound, the virtual space contented by 3D graphics and sounds can provide users more improved realities and vividness. However for the small 3D contents developers and companies, it is hard to implement 3D sound techniques because the implementation requires expensive sound engines, 3D sound technical understanding and 3D sound programming skills. Therefore 3D-sound-playing-interface is necessary to easy and cost-effective 3D sound implementation. Using this interface, graphics experts can easily add 3D sound techniques to their applications. In this paper, the followings are designed and implemented as a preliminary stage in the way of developing the 3D sound playing interface. First, we develop 3D sound S/W modules converting mono to 3D sound in PC based systems. Second, we develop the interconnection modules to map 3D graphic objects and sound sources. The developed modules in this paper can allow the user to percept sound source position and surround effect at the moving positions in the virtual world. In the coming works, we are going to develop the more completed 3D sound playing interface consisted of the synchronization technique for sound and moving objects, and HRTF.

  • PDF