• Title/Summary/Keyword: visco-elastic properties

Search Result 45, Processing Time 0.022 seconds

Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM

  • Abdulrazzaq, Mohammed Abdulraoof;Muhammad, Ahmed K.;Kadhim, Zeyad D.;Faleh, Nadhim M.
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.201-217
    • /
    • 2020
  • This paper employs differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT) for studying free vibrational characteristics of porous functionally graded (FG) nanoplates coupled by visco-elastic foundation. A secant function based refined plate theory is used for mathematical modeling of the nano-size plate. Two scale factors are included in the formulation for describing size influences based on NSGT. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. Visco-elastic foundation is presented based on three factors including a viscous layer and two elastic layers.The governing equations achieved by Hamilton's principle are solved implementing DQM. The nanoplate vibration is shown to be affected by porosity, temperature rise,scale factors and viscous damping.

ISO/TC 108/WG 28 : Characterization of the Dynamic Mechanical Properties of Resilient Visco-Elastic Materials (ISO/TC 108/WG 28 : Characterization of the Dynamic Mechanical Properties of Resilient Visco-Elastic Materials 활동상황보고)

  • 김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.799-810
    • /
    • 2001
  • 필자는 소음진동공학회가 품질기술원으로부터 ISO/TC108 기계진동 및 충격(Mechanical Vibration and Shock) 간사기관업무를 위탁 받은 후부터 SC6 진동 및 충격 발생시스템(Vibration and Shock Generating Systems)에 대한 한국측 위원으로 일을 해왔다. (중략)

  • PDF

Measurement Techniques of Mechanical Properties for Development of Nano Fabrication Process (나노 공정 개발을 위한 기계적 물성 측정 기법)

  • Lee, H.J.;Choi, B.I.;Kim, W.D.;Oh, C.S.;Han, S.W.;Hur, S.;Kim, J.H.;Ko, S.G.;Ahn, H.G.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1104-1110
    • /
    • 2003
  • There are many applications of nanostructures, have been suggested by lots of researchers. It is highly required to measure the properties of nano-sized materials for design and fabrication of the nanostructures. In this paper, several techniques for measuring the mechanical properties of nano-structures are presented laying emphasis on the activity of Nano Property Measurement Team in KIMM. Some advanced applications of nano-indenter are described for measuring elastic, visco-elastic, frictional and adhesive properties as well as the standard methods of it. Micro-tensile test technique with accurate in-plane strain measurement method is also presented and its role in the property measurement of nanostructures is discussed.

  • PDF

Effect of Xylitol on Bread Properties (자일리톨 첨가가 식빵의 특성에 미치는 영향)

  • Lee, Soo-Jeong;Paik, Jae-Eun;Han, Myung-Ryun
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.1
    • /
    • pp.56-63
    • /
    • 2008
  • This study investigated the quality characteristics of breads manufactured with xylito1. Four different concentrations(0, 5, 7, and 10%) of xylitol were added to the bread-making flour. Volume, color, the visco-elastic properties of the dough, and bread texture were analyzed. The dough volumes of the xylitol treatments during fermentation, as well as the final volumes of the xylitol breads were lower than those of the control dough and bread. Onset temperature slightly increased with the xylitol concentration, but entalphy changed minimally. Finally, the hardness of the bread positively increased with the xylitol concentration.

Evaluation of mechnical preoperties of vibration damping steel sheets and their application to automobile engine oil pan (제진강판의 기계적 특성평가와 자동차오일팬으로의 적용)

  • 정재환;민병두;하용철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.99-118
    • /
    • 1994
  • In recent years reduction in noise and vibration in automobile has been strongly required not only from the standpoint of environmental regulations but also for raising the commercial value and ride comfort. Vibration damping steel sheets, which are composites made by sandwitching a visco-elastic resin layer between two steel sheets, have been developed as effective noise-abating materials and have found a growth of use in automobile industries. Vibration damping steel sheets for commercial use must be excellent in vibration damping property, press formability and spot weldability, but are inferior to ordinary steel sheets. In this study, the mechanical properties of vibration damping steel are evaluated, and press formability is analysed on the basis of those properties and shear bonding strength. The development of engine oil pan using damping steel sheets are also reported, focusing on serious problems in oil pan drawing.

An experimental study on the viscosity of visco-elastic fluids (점탄성유체의 점성에 관한 실험적 연구)

  • 김춘식;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.21-41
    • /
    • 1982
  • Viscosity, especially characteristic among various properties of visco-elastic fluids such as high polymer solutions, is affected mainly by temperature and concentration. Hence, it is important for fluid engineering to express, by some equations, how the fluid characteristics vary with the change of temperature and concentration and to analyze them to obtain consistent viscous characteristics. High polymer solutions, synthetic products of modern chemical industry, suggest many interesting investigations because they are typical visco-elastic materials. Experimentation was made to derive some useful fluid characteristic equations of SEPARAN-NP10 (polyacylamide) expressed by n (flow behavior index) and K' (consistency index) when it is given temperature and concentration variation. To measure viscosity, capillary viscometer was adopted and the range of experimentation is 0-2,000 P.P.M. in concentration and 15-55 .deg.C in temperature. The experimental results are summarized as follows: The flow behavior index n 1) has nearly constant results irrespective of temperature variation at same conentration and the results are shown in (Table. 4-4-3) 2) has following equation, regardless of temperature, for the variation of concentration. n=-1.0765*10$^{-4}$ P+0.9915 (P:P.P.M.) The consistency index K' 1) has different results for the variation of temperature at same concentration and the results are given in (Table.4-7-2) 2) has following equation for the variation of concentration at same temperature. log 10$^{4}$K' =6.4785*10$^{-4}$ P-1.0529 (P:P.P.M)

  • PDF

Numerical analysis of vertical drains accelerated consolidation considering combined soil disturbance and visco-plastic behaviour

  • Azari, Babak;Fatahi, Behzad;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.187-220
    • /
    • 2015
  • Soil disturbance induced by installation of mandrel driven vertical drains decreases the in situ horizontal hydraulic conductivity of the soil in the vicinity of the drains, decelerating the consolidation rate. According to available literature, several different profiles for the hydraulic conductivity variation with the radial distance from the vertical drain, influencing the excess pore water pressure dissipation rate, have been identified. In addition, it is well known that the visco-plastic properties of the soil also influence the excess pore water pressure dissipation rate and consequently the settlement rate. In this study, a numerical solution adopting an elastic visco-plastic model with nonlinear creep function incorporated in the consolidation equations has been developed to investigate the effects of disturbed zone properties on the time dependent behaviour of soft soil deposits improved with vertical drains and preloading. The employed elastic visco-plastic model is based on the framework of the modified Cam-Clay model capturing soil creep during excess pore water pressure dissipation. Besides, nonlinear variations of creep coefficient with stress and time and permeability variations during the consolidation process are considered. The predicted results have been compared with V$\ddot{a}$sby test fill measurements. According to the results, different variations of the hydraulic conductivity profile in the disturbed zone result in varying excess pore water pressure dissipation rate and consequently varying the effective vertical stresses in the soil profile. Thus, the creep coefficient and the creep strain limit are notably influenced resulting in significant changes in the predicted settlement rate.

Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation

  • Mohammadimehr, Mehdi;Arshid, Ehsan;Alhosseini, Seyed Mohammad Amin Rasti;Amir, Saeed;Arani, Mohammad Reza Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • v.70 no.6
    • /
    • pp.683-702
    • /
    • 2019
  • The present study aims to analyze the magneto-electro-elastic (MEE) vibration of a functionally graded carbon nanotubes reinforced composites (FG-CNTRC) cylindrical shell. Electro-magnetic loads are applied to the structure and it is located on an elastic foundation which is simulated by visco-Pasternak type. The properties of the nano-composite shell are assumed to be varied by temperature changes. The third-order shear deformation shells theory is used to describe the displacement components and Hamilton's principle is employed to derive the motion differential equations. To obtain the results, Navier's method is used as an analytical solution for simply supported boundary condition and the effect of different parameters such as temperature variations, orientation angle, volume fraction of CNTs, different types of elastic foundation and other prominent parameters on the natural frequencies of the structure are considered and discussed in details. Design more functional structures subjected to multi-physical fields is of applications of this study results.

Vibration response of smart concrete plate based on numerical methods

  • Taherifar, Reza;Chinaei, Farhad;Faramoushjan, Shahram Ghaedi;Esfahani, Mohammad Hossein Nasr;Esfahani, Shabnam Nasr;Mahmoudi, Maryam
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.387-392
    • /
    • 2019
  • This research deals with the vibration analysis of embedded smart concrete plate reinforced by zinc oxide (ZnO). The effective material properties of structure are considered based on mixture rule. The elastic medium is simulated by orthotropic visco-Pasternak medium. The motion equations are derived applying Sinusoidal shear deformation theory (SSDT). The differential quadrature (DQ) method is applied for calculating frequency of structure. The effects of different parameters such as volume percent of ZnO, boundary conditions and geometrical parameters on the frequency of system are shown. The results are compared with other published works in the literature. Results indicate that the ZnO have an important role in frequency of structure.

Dynamic buckling of FGM viscoelastic nano-plates resting on orthotropic elastic medium based on sinusoidal shear deformation theory

  • Arani, A. Ghorbanpour;Cheraghbak, A.;Kolahchi, R.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.489-505
    • /
    • 2016
  • Sinusoidal shear deformation theory (SSDT) is developed here for dynamic buckling of functionally graded (FG) nano-plates. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. In order to present a realistic model, the structural damping of nano-structure is considered using Kelvin-Voigt model. The surrounding elastic medium is modeled with a novel foundation namely as orthotropic visco-Pasternak medium. Size effects are incorporated based on Eringen'n nonlocal theory. Equations of motion are derived from the Hamilton's principle. The differential quadrature method (DQM) in conjunction with Bolotin method is applied for obtaining the dynamic instability region (DIR). The detailed parametric study is conducted, focusing on the combined effects of the nonlocal parameter, orthotropic visco-Pasternak foundation, power index of FG plate, structural damping and boundary conditions on the dynamic instability of system. The results are compared with those of first order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the dynamic buckling responses of system.