• Title/Summary/Keyword: viscoelastic property

Search Result 105, Processing Time 0.028 seconds

Studies on the Rheological Property of Korean Noodles -I. Viscoelastic Behavior of Wheat Flour Noodle and Wheat-Sweet Potato Starch Noodle- (한국 재래식 국수류의 유체 변형성에 관한 연구 -제 1 보 : 밀국수와 냉면국수의 점탄성-)

  • Lee, Cherl-Ho;Kim, Cheol-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.183-188
    • /
    • 1983
  • The viscoelastic behavior of traditional Korean noodles was examined by using a tensile tester built in the laboratory. The creep test of cooked noodle strand showed that a linear viscoelastic response could be expected for a short time of creep, i.e. 120 sec for wheat flour noodle and 60 sec for wheat-sweet potato starch noodle, with the stress range between $4{\times}10^4\;and\;14{\times}10^4\;dyn\;cm^{-2}$. The elastic modulus was estimated to be $7.0{\times}10^5\;dyn\;cm^{-2}$ for wheat flour noodle and $3.9{\times}10^5\;dyn\;cm^{-2}$ for wheat-sweet potato starch noodle. A peculiar increase in viscosity with increasing stress, i.e. stress-hardening, was observed in the noodles studied.

  • PDF

Complex Compliance of Rough Rice Kernel under Cyclic Loading (주기적(週期的) 반복하중(反復荷重)을 받는 벼의 복소(複素)컴프라이언스)

  • Kim, M.S.;La, W.J.;Park, J.M.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.79-90
    • /
    • 1992
  • Viscoelastic characteristics of agricultural products may be determined through three basic tests ; stress relaxation, creep, and dynamic test. Considering the changeability of living materials, dynamic test in which information is derived in a relatively short time appears to be highly desirable, in which either cyclic stress or cyclic strain is imposed and the remaining quantity (strain or stress) is measured. The periodically varying stress will also result in periodically varying strain which in a viscoelastic material should theoretically be out of phase with the stress, because part of the energy subjected to sample is stored in the material as potential energy and part is dissipated as heat. This behavior results in a complex frequency-dependent compliance denoted by J($i{\omega}$). The complex compliance and therefore the storage compliance, the loss compliance, the phase angle, and percent energy loss for the sample should be obtainable with a given static viscoelastic property of the material under static load. The complex compliance of the rough rice kernel were computed from the Burger's model describing creep behavior of the material which were obtained in the previous study. Also, the effects of cyclic load and moisture content of grain on the dynamic viscoelastic behavior of the samples were analyized. The results obtained from this study were summarized as follows ; 1. The storage compliance of the rough rice kernel slightly decreased with the frequency applied but at above the frequency of 0.1 Hz it was nearly constant with the frequency, and the loss compliance of the sample very rapidly decreased with increase in the frequency on those frequency ranges. 2. It was shown that the storage compliance and the loss compliance of the sample increased with increase in grain moisture content. Effect of grain moisture content on the storage compliance of the sample was highly significant than effect of the frequency applied, but effect of the frequency on the loss compliance of the sample was more significant than effect of grain moisture content. 3. In low moisture content, the percent energy loss of Japonica-type rough rice was much higher than that of Indica-type rough rice, but, in high moisture content, vice versa.

  • PDF

Thermal and Mechanical Properties with Hydrolysis of PLLA/MMT Nanocomposite (PLLA/MMT 나노복합재료의 가수분해에 따른 열적, 기계적 물성)

  • Lee Jong Hun;Lee Yun Hui;Lee Doo Sung;Lee Youn-Kwan;Nam Jae-Do
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.375-379
    • /
    • 2005
  • The morphology and therma]/viscoelastic characteristics were investigated for PLLA/MMT nanocomposite manufactured by incorporating inorganic nanosized silicate nanoplatelets into biodeuadable poly(l-lactic acid) (PLLA). The XRD difiactogram and TEM image may be regarded as a formation of homogeneously dispersed nanocomposites. The melting energy(${\Delta}H_m$) was increased during hydrolysis process because of increase of crystallinity. As MMT played a role of reinforcing agent, the storage modulus was increase in case of PLLA/MMT nanocomposite, it was well coincided with our previous results. From SEM image, many tiny pinholes formed by spinodal decomposition were observed on the surface, and the shape of nanocomposite was maintained during hydrolysis process. In this study, it was shown that the control of biodegradation rate, thermal/mechnical property was possibile by incorporating MMT.

A Study on the Jetting Phenomena in Injection Molding Process (사출성형 공정에서 젯팅 현상에 관한 고찰)

  • Lyu Min-Young
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.125-131
    • /
    • 2002
  • Surface defects in injection molded parts are due to the unsteady flow of polymer melt which are related to the geometries of cavity and gate, the operational conditions of injection and the rheological properties of polymer. In this study we have examined jetting phenomena in injection molding process for three kinds of PCs which have different molecular weight and structure, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to die swell. This means that the jetting is strongly affected by the elastic property rather than the viscous property in viscoelastic characteristics of molten polymer. Large die swell would eliminate jetting however, the retardation of die swell would stimulate jetting. In the point of mold design, reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and associated surface defects regardless of magnitude of elastic property. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF

The Effect of Chemical Structure on the Adhesion Properties of Acrylic Pressure Sensitive Adhesives Prepared by Multifunctional Monomers (다관능성 단량체를 함유한 아크릴계 점착제의 화학적 구조에 따른 점착물성의 변화)

  • Cho, In-Mok;Kim, Ho-Gyum;Han, Dong-Hee;Lim, Jeong-Cheol;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.226-236
    • /
    • 2010
  • UV irradiated acrylic pressure sensitive adhesives(PSAs) are prepared to be used for thermal pad in plasma display panel(PDP). The effect of the chemical structure of side-chain in comonomer and of crosslinking agent on wet-out property of acrylic PSAs in wide temperature range were investigated. The correlationship between viscoelastic behavior and adhesion properties, such as tack and peel strength, was also studied. The experimental results supported that wet-out and adhesion properties of acrylic PSAs were enhanced inversely proportional to side-chain length of comonomer in wide temperature range. The peel energy clearly increased in acrylic PSAs prepared by using di(ethylene glycol) dimethylacrylate (DEGDMA) for crosslinking agent. The results might be due to the difference in the glass transition temperature and viscoelastic behavior of acrylic PSAs.

Study on PLLA Alloys with Impact Modifier and Talc (충격 보강제와 탈크를 이용한 PLLA 얼로이 연구)

  • Jeong, Dong-Seok;Nam, Byeong-Uk;Jang, Mi-Ok;Hong, Chae-Hwan
    • Elastomers and Composites
    • /
    • v.45 no.2
    • /
    • pp.129-136
    • /
    • 2010
  • In this work, PLLA/EGMA blends were prepared by melt blending of biodegradable Poly-L-lactic acid(PLLA) with Poly(ethylene-co-glycidyl methacrylate)(EGMA) and Engage as impact modifiers by twin screw extruder. Blend compositions of PLLA/Impact modifier blends were 100/0, 75/25, 50/50, 25/75 and 0/100, respectively. Also, Talc was added to 3 PLLA rich phases on PLLA/EGMA blends. The morphology, viscoelastic/mechanical properties were characterized by FESEM, DMA, UTM and Izod impact tester. DMA and Izod impact test data showed that storage modulus at room temperature with increasing EGMA and Engage contents decreased, and impact strength increased. However, storage modulus at room temperature increased by adding talc. From FESEM image, we observed that domain phase was well dispersed into matrix. Although the tensile strength and flexural modulus were decreased with increasing the content of EGMA and Engage in them, they could be supplemented by adding talc.

Effect of High-frequency Diathermy on Hamstring Tightness

  • Kim, Ye Jin;Park, Joo-Hee;Kim, Ji-hyun;Moon, Gyeong Ah;Jeon, Hye-Seon
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.65-71
    • /
    • 2021
  • Background: The hamstring is a muscle that crosses two joints, that is the hip and knee, and its flexibility is an important indicator of physical health in its role in many activities of daily living such as sitting, walking, and running. Limited range of motion (ROM) due to hamstring tightness is strongly related to back pain and malfunction of the hip joint. High-frequency diathermy (HFD) therapy is known to be effective in relaxing the muscle and increasing ROM. Objects: To investigate the effects of HFD on active knee extension ROM and hamstring tone and stiffness in participants with hamstring tightness. Methods: Twenty-four participants with hamstring tightness were recruited, and the operational definition of hamstring tightness in this study was active knee extension ROM of below 160° at 90° hip flexion in the supine position. HFD was applied to the hamstring for 15 minutes using the WINBACK device. All participants were examined before and after the intervention, and the results were analyzed using a paired t-test. The outcome measures included knee extension ROM, the viscoelastic property of the hamstring, and peak torque for passive knee extension. Results: The active knee extension ROM significantly increased from 138.8° ± 9.9° (mean ± standard deviation) to 143.9° ± 10.4° after the intervention (p < 0.05), while viscoelastic property of the hamstring significantly decreased (p < 0.05). Also, the peak torque for knee extension significantly decreased (p < 0.05). Conclusion: Application of HFD for 15 minutes to tight hamstrings immediately improves the active ROM and reduces the tone, stiffness, and elasticity of the muscle. However, further experiments are required to examine the long-term effects of HFD on hamstring tightness including pain reduction, postural improvement around the pelvis and lower extremities, and enhanced functional movement.

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

A Study on Solution Blend of Poly(vinyl chloride) with Poly(VC-co-AN) (폴리염화비닐(PVC)/염화비닐-아크릴로니트릴 공중합체의 용액 블렌드에 관한 연구)

  • Lee, Soo;Oh, Gang-Seok;Kim, Seung-Ryung;Oh, Young-Se
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.559-567
    • /
    • 2002
  • Poly (vinyl chloride) was blended with blended with vinyl chloride-acrylonitrile copolymers (MO-01 : M$\sub$w/=199049, AN=22.79%, MO-02 : M$\sub$w/=238523, AN=47.03%, MO-03 : M$\sub$w/=289496, AN=52.49%, MO-04 : M$\sub$w/=341837, AN=58.68% by mixing dimethylformamide (DMF) solution of each polymer and their morphology, viscosity, viscoelastic and mechanical properties were studied. Blends of PVC and MO-01 showed a homogeneous morphology. On the contrary, the other copolymer blends showed a large phase separation with spherical domains. Miscibility of blends of PVC and MO-01 was shown to be better than that of blends of other copolymers from morphological and viscoelastic studies. Even though blends of PVC and MO-01 were observed to be the considerable compatibility at a composition of PVC/MO-01=90/10, the mechanical properties of blend films were not improved too much in most blend cases.

Inelastic Analysis of Reinforced Concrete Structure Subjected to Cyclic Loads with Confining Effects of Lateral Tie (횡방향 철근의 구속효과를 고려한 반복하중을 받는 철근콘크리트 부재의 비탄성해석)

  • 유영화;최정호;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.79-93
    • /
    • 1998
  • The eigenvalue problem is presented for the building with added viscoelastic dampers by using component mode method. The Lagrange multiplier formulation is used to derive the eigenvalue problem which is expressed with the natural frequencies of the building, the mode components at which the dampers are added, and the viscoelastic property of the damper. The derived eigenvalue problem has a nonstandard form for determining the eigenvalues. Therefore, the problem is examined by the graphical depiction to give new insight into the eigenvalues for the building with added viscoelastic dampers. Using the present approach the exact eigenvalues can be found and also upper and lower bounds of the eigenvalues can be obtained.

  • PDF