• Title/Summary/Keyword: viscous polysaccharide

Search Result 18, Processing Time 0.037 seconds

The Nature of Viscous Polysaccharide Formed Kimchi Added Sucrose (Sucrose를 첨가한 김치의 발효시 생성되는 점성물질의 본성에 대하여)

  • Hahn, Young-Sook;Woo, Kyung-Ja;Park, Young-Hee;Lee, Tae-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.198-202
    • /
    • 1997
  • Jangkimchi is a kind of Kimchi which is made with soy-sauce instead of salt. Occasionally, when sugar is added to Jangkimchi for condiment, the kimchi juice becomes viscous. In this study. the nature of the viscous material and the condition for producing viscous property in Kimchi juice were investigated. HPLC analysis showed that the viscous material in Jangkimchi is polysaccharide composed of glucose. Sucrose was more effective in forming viscous juice than glucose and the viscosity increased with the addition of sucrose up to 10%. Soy-sauce also played a role in increasing the viscosity of Kimchi juice compared with salt. Aerobic fermentation condition was found to be another factor to make the juice viscous. The population of Leuconostoc mesenteroides, well-known producer of viscous dextran was not different in the Kimchi juice prepared with the addition of sucrose from that without sucrose, which implys that the Jangkimchi preparation methods such as addition of sucrose and soy-sauce would do some effects on the production of viscous material in Jangkimchi.

  • PDF

Isolation of a Polysaccharide Producing Bacterium and Properties of Its Polysaccharide (다당류 생산세균의 분리동정 및 그 물질의 특성)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Applied Biological Chemistry
    • /
    • v.32 no.3
    • /
    • pp.303-308
    • /
    • 1989
  • A bacterium synthesizing extracellular polysaccharide was isolated from soil and identified as Enterobacter agglomerans. The polysaccharide was found to be glucan polymer containing glucose and galactose in a molar ratio of 1 : 1.1. The aqueous solution was very viscous. The viscosity of 1% solution was 264 mPa.s. at $42\;sec^{-1}$ and yield stress was 4.89 Pa. The polysaccharide solution did not have thermal stability but pH and salt stability.

  • PDF

A Yellow Pigmented Soil Bacterium Producing a Polysaccharide of High Viscosity (고점도 다당류생산 미생물의 분리 및 특성)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.453-459
    • /
    • 1989
  • A strictly aerobic bacterium forming yeller pigment and a highly viscous polysaccharide was isolated. The bacterium was identified as Pseudomonas mendocia. The polysaccharide was presumed to be ${\beta}-glucan$ with o-acetyl group in its structure and the constituent sugar components were glucose and rhamnose in the molar ratio of 2.1: 1.0. The intrinsic viscosity was 64.73dl/g. The apparent viscosity of 1% aqueous solution was 428 mPa.s. at $42\;sec^{-1}$ and the yield stress of the solution was 8.89Pa. The polysaccharide did not have thermal stability but show pH and salt stability.

  • PDF

Rheological Properties of Biopolymer Produced by Pseudomonas delafieldii (Pseudomonas delafieldii가 생성하는 다당류의 레올로지 특성)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.475-480
    • /
    • 1989
  • The extracellular polysaccharide was isolated from the culture of Ps. delafieldii and its rheological property was evaluated. The aqueous solution was extremely viscous and shows pseudoplastic behaviour. The flow behaviour index and apparent viscosity of 1 %solution were 0.09 and 1169 mPa·s. The solution was stable over pH change but did not have thermal stability. The activation energy of flow of 1 % solution was 4.44 kcal/mole. The concentration dependency could be expressed double logarithmically.

  • PDF

Isolation of Biopolymer-producing Bacterium and Its Growth Pattern (Biopolymer 생산세균의 분리 및 증식패턴)

  • Yoo, Jin-Young;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.5
    • /
    • pp.421-428
    • /
    • 1989
  • A soil bacterium synthesizing an extremely viscous biopolymer was isolated and identified as Pseudomonas delafieldii. The optimal pH and temperature for the growth were 6.5 and 3$0^{\circ}C$, respectively. Maximum specific growth rate was 0.24 h$^{-1}$. The specific polysaccharide productivity, growth yield and product yield were 6.25 mg/g-cell/h, 54.5% and 38.39%, respectively. The polysaccharide was presumed to be $\beta$-glucan containing glucose and gluconolactone (1.9:1.0 in molar ratio) and 1.35 % acetyl group, Element analysis showed that it contained carbon (31.85%) and hydrogen (5.15%). The weight average molecular weight by GPC was 5.64$\times$10$^7$. The intrinsic viscosity was 42.84 dl/g.

  • PDF

Gellan-type Microbial Polysaccharide Production in Continuous Fermentation (Gellan형 미생물 다당류의 연속생산)

  • 정봉우;이은미장광엽김춘영
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.85-90
    • /
    • 1994
  • The Gellan-type polysaccharide produced by Pseudomonas elodea(ATCC 31461) is one of the new heteropolysaccharides, having useful properties as gelling, suspending, stabilizing, emulsifying and binding agents in aqueous systems. Medium compositions for growth stage and production stage are improved. The problems of low cell concentration and poor productivity in highly viscous fermentation were attributed to inadequate mixing accompanied by insufficient oxygen transfer. During continuous culture, cell growth and polysaccharide production were greatly affected by the apparent viscosity, and they showed oscillation behavior, i.e. as the product concentration increases, cell concentration decreases. With improved culture conditions, the productivity of continuous culture increased up to 0.6g/$\ell$/hr(6-fold that of batch culture ) at dilution rate, D=$0.14hr^{-1}$.

  • PDF

Production and Rheological Properties of the Polysaccharide from Bacillus sp. A29 (Bacillus sp. A29에 의한 다당류의 생산과 물성)

  • Ahn, Sung-Ku;Suh, Hyun-Hyo;Lee, Chang-Ho;Oh, Hee-Mock;Kwon, Gi-Seok;Yi, Dong-Heui;Yoon, Byung-Dae
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 1994
  • A bacterial strain producing highly viscous polysaccharide(A29 POL) was isolated from soil and identified sa Bacillus sp. A29. The cultural conditions of the Bacillus sp. A29 for the polysaccharide prouction were dextrin 12%, soytone 0.2%, SnCl$_{2}$ $\cdot $2H$_{2}$O 0.02%, Na$_{2}$HPO$_{4}$ $\CDOT $12H$_{2}$O 0.36%, L-alanine 0.01%, initial pH6.8, and 30$\circ $C at pH 3 FOR 4 days. Final viscosity of the culture broth was 65, 000 cp and then the amount of produced polysaccharide was 8.3 g/l. A29 POL was composed of glucose and xylose. A29 POL showed high viscosity at low concentration(0.1%) and in the presence of the salts such as NaCl or CaCl$_{2}$. A29 POL showed high viscosity acid condition and at alkali condition and high pseudoplasticity in the presence of a NaCl or CaCl$_{2}$. It was shown that the viscosity at high temperature(80$\circ $C) was decreased but it was recovered at low temperature (20$\circ $C. A29 POL was able to from film and gel in the presence of MgSO$_{4}$ $\CDOT $7H$_{2}$O, Na$_{2}$CO$_{3}$ \CDOT $H$_{2}$O, MnSO$_{4}$ $\CDOT $ 7H$_{2}$O. A29 POL had anionic charge.

  • PDF

Isolation and Immunomodulating Activity of an Extracellular Polysaccharide Produced by Bacillus sp. PS-12 (Bacillus sp. PS-12가 생산하는 extracellular polysaccharide의 분리 및 immunomodulating activity)

  • Na, Ye-Seul;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.19 no.6
    • /
    • pp.744-750
    • /
    • 2009
  • A bacterial strain producing highly viscous extracellular polysaccharide was isolated from soil. Through morphological, physiological and chemotaxonomical studies, it was identified as a Bacillus sp. and named Bacillus sp. PS-12. The extracellular polysaccharide, named PS-12 was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation and gel permeation chromatography. The purified polysaccharide was found to consist of glucose, mannose, galactose, and fucose, with a molar ratio of approximately 7:3.2:2:1, respectively. PS-12 was investigated for its immunostimulating activity on murine macrophage RAW264.7 cells using an ELISA assay. PS-12 stimulated the production of TNF-${\alpha}$ to a level 50 times greater than the control and also induced 1L-6 secretion in a dose-dependent manner. The cytotoxicity on RAW264.7 cells by PS-12 was relatively low with 10% cytotoxicity at 2 ${\mu}g$/ml. These results indicate that PS-12 is less cytotoxic to immune cells and possess immunomodulating activity in which it can produce cytokines including TNF-${\alpha}$ and 1L-6 from macrophages.

Production and Characterization of Extracellular Polysaccharide Produced by Pseudomonas sp. GP32 (Pseudomonas sp. GP32에 의해 생산된 세포 외 다당류의 생산 및 특성)

  • Lee, Myoung Eun;Lee, Hyun Don;Suh, Hyun-Hyo
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.1027-1035
    • /
    • 2015
  • A strain GP32 which produces a highly viscous extracellular polysaccharide was conducted with soil samples and identified as Pseudomonas species. The culture flask conditions for the production of extracellular polysaccharide by Pseudomonas sp. GP32 were investigated. The most suitable carbon and nitrogen source for extracellular polysaccharide production were galactose and (NH4)2SO4. The optimum carbon/nitrogen ratio for the production of extracellular polysaccharide was around 50. The optimum pH and temperature for extracellular polysaccharide production was 7.5 and 32℃, respectively. In batch fermentation using a jar fermentor, the highest extracellular polysaccharide content (15.7 g/l) was obtained after 70 hr of cultivation. The extracellular polysaccharide produced by Pseudomonas sp. GP32 (designated Biopol32) was purified by ethanol precipitation, cetylpyridinium chloride (CPC) precipitation, and gel permeation chromatography. Biopol32, which has an estimated molecular weight of over 3×107 datons, is a novel polysaccharide derived from sugar components consisting of galactose, glucose, gulcouronic acid and galactouronic acid in an approximate molar ratio of 1.85 : 3.24 : 1.00 : 1.42. The solution of Biopol32 showed non-Newtonian characteristics. The viscosity of Biopol32 exhibited appeared to be higher at all concentration compared to that of zooglan from Zoogloea ramigera. An analysis of the flocculating efficiency of Biopol32 in industry wastewater (food, textile, and paper wastewater) revealed chemical oxygen demand (COD) reduction rates 58.4-67.3% and suspended solid (SS) removal rates 82.6-91.3%. Based on these results, Biopol32 is a possible candidate for industrial applications such as wastewater treatment.

Isolation and Characterization of a Novel Polysaccharide Producing Bacillus polymyxa A49 KCTC 4648P

  • Ahn, Sung-Gu;Suh, Hyun-Hyo;Lee, Chang-Ho;Moon, Seong-Hoon;Kim, Hee-Sik;Ahn, Keug-Hyun;Kwon, Gi-Seok;Oh, Hee-Mock;Yoon, Byung-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.171-177
    • /
    • 1998
  • The strain A49, which produces a new type of extracellular polysaccharide was isolated from soil samples. From morphological, physiological and biochemical tests, the strain A49 was identified as a Bacillus polymyxa and named Bacillus polymyxa A49. Bacillus polymyxa A49 was found to produce a highly viscous extracellular polysaccharide when grown aerobically in a medium containing glucose as the sole source of carbon. The polysaccharide (A49 POL) showed a homogeneous pattern on gel permeation chromatography (GPC) and its molecular weight was estimated to be about 1.6 mega dalton (mDa). The FT-IR spectrum of A49-POL revealed typical characteristics of polysaccharides. As a result of investigations with HPLC and carbozole assay, A49-POL was found to consist of L-fucose, D-galactose, D-glucose, D-mannose, and D-glucuronic acid, with the molar ratio of these sugars being approximately 1:2:7:50:12. Rheological analysis of A49 POL revealed that it is pseudoplastic and has a higher apparent viscosity at dilute concentrations than does xanthan gum. The consistancy factor of A49 POL was found to be higher, and the flow index of A49 POL lower, than xanthan gum. Its apparent viscosity was comparatively unstable at various temperatures. the A49 POL showed the highest apparent viscosity at pH 3. When salts were added to A49 POL solution, the solution was compatible with up to 10% KCl, 35% NaCl, 55% $CaCl_2$, 55% $MgCl_2$, 55% $K_2HPO_4$, and 110% $Ca({NO_3})_2$, respectively.

  • PDF