• Title/Summary/Keyword: void ratio

Search Result 625, Processing Time 0.03 seconds

Influence of Paste Fluidity and Vibration Time for Fundamental Properties of Porous Concrete (시멘트체이스트의 유동성 및 진동다짐시간이 포러스콘크리트의 기초물성에 미치는 영향)

  • 이성일;유범재;장종호;김재환;백용관;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.311-316
    • /
    • 2001
  • This study analyzed the influence of paste fluidity and vibration time for fundamental properties of porous concrete. Results of this study were shown as follows; 1) Even if target void ratio is same, void ratio and compressive strength of porous concrete is different according to w/c, paste flow and vibration time. So, In case of target void ratio, we must consider the influence of w/c, paste flow, and vibration time. 2) Though w/c and vibration time are same, as paste flow increase, all void ratio, continuous void ratio, and compressive strength decrease and difference between upper and lower void ratio increase. 3) Though w/c and paste flow are same, as vibration time increase, all void ratio and continuous void ratio decrease and difference between upper and lower void ratio increase. Also, compressive strength increase by 10 seconds and decease after 10 seconds. 4) As types of superplasticizer is different, all void ratio, continuous void ratio, and compressive strength are different. So, we must give consideration to paste fluidity and vibration time in order that increase of strength of porous concrete and distribution of uniform void.

  • PDF

Compaction Management of Fill Materials for Concrete Faced Rockfill Dam Using Standard Void Ratio (표준간극비를 이용한 콘크리트 표면차수벽형 석괴댐 축조재료의 다짐 관리)

  • Kim Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.59-66
    • /
    • 2006
  • In this study, construction modulus, void ratio and settlement characteristics of 38 CFRD in domestic and foreign countries were investigated from monitoring data. The effect of field dry density and void ratio to dam body was analyzed. The standard void ratio of CFRD that can be easily used by dam designers and field engineers was proposed from the monitoring data. It was confirmed that we can get the degree of compaction needed for reasonable compaction of dam body by calculating the field dry density from inverse operation of the standard void ratio. It was thought that the void ratio of CFRD depends on shape coefficient and in case of a high shape coefficient, the void ratio was high with its void ratio 0.17 -0.38.

Characterization of Non-linear Consolidation of Dredged Soil from Incheon Area (인천 지역 준설토의 비선형 압밀특성 연구)

  • Oak, Young-Suk;An, Yong-Hoon;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1693-1706
    • /
    • 2008
  • It is of importance to determine the zero effective stress void ratio($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-liner finite strain consolidation behavior for ultra-soft dredged materials. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of very soft soil deposits, and acts as a starting point for self-weight consolidation in the non-linear finite strain numerical analysis such as PSDDF. In this paper, a new method for determining the zero effective stress void ratio has been introduced with the aid of measuring electrical resistivity of the specimen. A correlation between the zero effective stress void ratio and the initial slurry void ratio has been proposed, which can be used in PSDDF analysis as an input parameter. Combining all of the accessible experimental data, the consolidation characteristics of a dredged soil from the Incheon area has been studied in detail.

  • PDF

Void Closing Conditions of Large Ingot by Path Schedules (대형 잉곳의 기공압착 효과 향상을 위한 폐쇄조건 연구)

  • Choi, I.J.;Choi, H.J.;Kim, D.W.;Choi, S.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.480-485
    • /
    • 2010
  • In this work, the closing behavior of cylindrical-shaped voids was experimentally investigated according to various parameters such as reduction ratio in height, initial void size and billet rotation during hot open die forging process. The reduction ratio in height, number of path, and billet rotation were chosen as key process parameters which influence the void closing behavior including the change of void shape and size. On the other hand, values of die overlapping and die width ratio were set to be constant. Void closing behavior was estimated by microscopic observation. Based on the observations, it was confirmed that application of billet rotation is more efficient to eliminate the void with less reduction ratio in height. The experimental results obtained from this study could be helpful to establish the optimum path schedule of open die forging process.

The Prediction of Void Ratio in Unsaturated Soils (불포화토에서 공극비의 추정)

  • Lee Dal-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.4
    • /
    • pp.51-57
    • /
    • 2006
  • This study was carried out to investigate the soil water characteristic curve and prediction of void ratio with net stress and matric suction using the linear elastic and volumetric deformation analysis method on unsaturated silty. The unsaturated soil tests were conducted using a modified oedometer cell and specimens were prepared at water content 2 times of liquid limit and required void ratio. The axis translation technique was used to create the desired matric suctions in the samples. It is shown that soil water characteristic curve and volumetric water content were affected significantly by preconsolidation pressure. As a matric suction increases, the reduction ratio of void ratio was shown to considerably small. Also, the predicted and measured void ratio for unsaturated soils using the linear elastic and volumetric deformation analysis showed good agreement as net stress and matric suction increases.

A Study on the Parameters Determining the Void Crushing Ratio in the Cogging Process of Large Forged Products (대형 단조품 코깅 공정의 기공 압착 인자에 대한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.502-508
    • /
    • 2007
  • Effect of the process parameters of the cogging process on the void crushing has been studied in order to identify the most effective factor. The process parameters considered in this study are die width ratio, reduction ratio and pre-cooling time before cogging process. Void crushing analysis with the selected process parameters was carried out using FE analysis. The results of FE analysis were evaluated by Taguchi method. It was found that the efficiency of void crushing increases with an increase in the values of all selected process parameters and the principal factor controlling the void crushing was identified as the reduction ratio.

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

Porosity and Strength Properties of Permeable Concrete Using Limestone Mine Wastes as Coarse Aggregate for Concrete (폐석회석 굵은골재를 사용한 투수 콘크리트의 공극 및 강도특성)

  • 최연왕;임학상;정지승;문대중;신화철
    • Resources Recycling
    • /
    • v.12 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • Limestone mine waste was used as a aggregate far permeable concrete. Void ratio, continuous void ratio, coefficient of permeability, compressive strength and flexural strength of concrete were measured and then the relationship between porosity and strength properties was investigated. Void ratio, continuous void ratio and strength properties of permeable concrete were greatly influenced by the grain size of aggregate and void filling ratio in comparison with the containing ratio of limestone mine waste. Furthermore, void ratio showed a good relation with continuous void ratio, and porosity of permeable concrete indicated a good relation with strength properties also. The coefficient of permeability of permeable concrete using limestone waste was over 0.2 cm/sec and was excellent result in comparison with normal concrete. Therefore, it could be expected that the limestone mine waste would be utilized as aggregate for pavement concrete, green concrete and water resource specie concrete in the results of this study.

A Study on the Sound Absorption Properties of Foamed Concrete According to Dilution Ratio of Foaming Agent (기포제 희석비율에 따른 기포콘크리트의 흡음특성에 관한 연구)

  • Kang Ki-Woong;Kang Chul;Kim Ha-Seok;Kwag Eun-Gu;Kwon Ki-Joo;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.5-8
    • /
    • 2005
  • Sound absorbing performance is affected by porosity and continuity of void, therefore it is important to maintain stabilization of foam and to analyze properties of void pore in hardened state. The purpose of this study is to analyze the sound absorption properties and void characteristic of foamed concrete according to dilution ratio of foaming agent. The results of this experiment were as follows. It is determined that an increase in total and continuous void ratio is achieved by increasing of dilution ratio, and a shorter absorbing time was exhibited at a higher continuous void ratio. When the average void size of foamed concrete was below 1.5mm, the tendency of sound absorption coefficient compared with general sound absorber was appeared similarly.

  • PDF

The Estimation of Compacted State on Sea Dike Embankment with the Interrelationships Between the Hydraulic Head Loss Rate, the Hydraulic Conductivity and the Void Ratio (수두손실률, 투수계수 및 공극비의 상호관계를 통한 제체의 다짐상태 평가)

  • Eam, Sung Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.11-23
    • /
    • 2015
  • In this study the laboratory test for hydraulic conductivity and the seepage analysis with finite element method on measurement section of sea dike embankment were performed for the purpose of estimating the relative density of embankment from the measured pore water pressures, and both results of the test and the analysis were coupled with the method of estimating seepage blocking state with the hydraulic head loss rate in sea dike embankment. The relationship of void ratio vs hydraulic head loss rate was obtained by setting hydraulic conductivity as common ordinate on the relationships between the void ratio and the hydraulic conductivity and between the hydraulic conductivity and the hydraulic head loss rate. The void ratio on the segment between measuring points was calculated from the coupled relationship of the void ratio vs the hydraulic conductivity. The allowable upper and lower limits of hydraulic head loss rate and those of void ratio on the safety were generated from the coupled relationship between the laboratory compaction test and the sedimentation test. Current hydraulic head loss rate and void ratio were evaluated in the allowable range between upper and lower limits.