• Title/Summary/Keyword: volatile components

Search Result 893, Processing Time 0.034 seconds

Volatile Aroma Components and Fatty acid in Fruit of Broussonetia Kazinoki Siebold (닥나무 열매( 저실자)의 휘발성 향기성분과 지방산조성에 관한 연구)

  • 윤숙자;변명우;장명숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.130-136
    • /
    • 1994
  • Voltaile aroma components and fatty acid in fruit of Broussonetia kazinoki siebold were investigated . The experimental results revealed the presence of 41 volatile components . Forty one compounds , including 4 hydrocarbons(2.45), 7 aldehydes (20%), 3 ketones(1.0%), 7 terpenes(18.05), 8 acids (42%), 4 alcohols (4.2%) and 5 phenols (9.85) were identified. The content of crude lipid was 28.5% . Fatty acid composition were mainly consisted of linoleic (91.61%) and followed by oleic(3.525) , palmitic (3.40%), stearic (0.855) and linolenic acid(0.39%)

  • PDF

The Analysis of Neutral Volatile Flavor Compounds in Tobacco (잎담배 중 neutral volatile flavor 화합물 분석)

  • Lee, Jeong-Min;Lee, Jang-Mi;Jang, Gi-Chul;Kim, Hyo-Keun;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.31 no.2
    • /
    • pp.85-94
    • /
    • 2009
  • This work has been conducted to develop a method for the analysis of neutral volatile flavors and their precursors in tobacco. The neutral volatile compounds and precursors in tobaccos have been investigated by Neutral Volatile scan method(NV scan) using Soxhlet extractor. The method has been used to analyze a range of different tobaccos and tobacco products. Neutral flavor compounds were classified as three sections(1st Volatile Fraction, Breakdown Flavor Products and Cembranoid Precursors). The major components of the First Volatile Fraction were 2-cyclohexene-1-one, 6-methyl-5-hepten-2-one, limonene and phenyl ethanol. The major components of Breakdown Flavor Products were isophorone, solanone, damascenone, 3-hydroxy-$\beta$-damascone, geranyl acetone, $\beta$-ionone, dihydroactinidiolide, norsolanadione, neophytadiene, hexahydrofarnesylacetone, farnesyl acetone and megastigmatrienone. The major cembranoid precursor compounds were dibutyl phthalate, duvatrenediols, 8,12-epoxy-14-labden-13-ol, 11-hydroperoxy-2,7,12(20)-cembratriene-4,6-diol, 12,15-epoxy-12,14-labadien-8-ol, 2,7,11-cembratrien-4,6-diol and 8,13-epoxy-14-labdien-12-ol. The NV scna results of tobacco types(flue-cured, burley and oriental) showed that each tobacco type has a characteristic flavor component profile.

Volatile Flavor Components from Traditional Cultivars of Pear (Pyrus pyrifolia N.) (재래종 배의 휘발성 향기성분)

  • Park, Eun-Ryong;Choi, Jin-Ho;Kim, Kyong-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2002
  • Volatile flavor components in three pear varieties (Pyrus pyriforia N.) of traditional cultivar, Bongri, Hwangsilri and Yongmokri, were collected by SDE method using the mixture of n-pentane and diethylether as an extract solvent and were identified by GC/MS. Among 97 compounds identified from all varieties, there were 72, 58 and 66 components in Bongri, Hwangsilri and Yongmokri, respectively. Ethyl acetate was the dominant constituent in all cultivars and also volatile profiles contained large quantity of ethanol and acetic acid. Butyl acetate identified as a main component in Bongri was not found in other pears, but in Hwangrilri and Yongmokri only 4 to 5 esters played important role in total volatile flavor composition. The volatile profiles of these three varieties were characterized by compounds in group of aldehydes, esters, alcohols, acids and ketones. As classified by functional group of separated and identified components, esters and alcohols in Bongri, alcohols in Hwangsilri, and esters in Yongmokri were roled as the title in composition of volatile flavor components. Although small amount, Yongmokri had the highest rate of volatile production at 6.552 mg/kg of pear while Hwangsilri produced the lowest at 4.175 mg/kg of pear.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Analysis of Volatile Organic Components from Fresh and Decayed Onions (생양파와 부패된 양파의 휘발성 유기성분 분석)

  • 박은령;고춘남;김성호;김경수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1011-1020
    • /
    • 2001
  • Volatile organic components from onions stored in the different decay conditions were extracted by SDE apparatus and analyzed by GC-FID and GC/MS. Components of 115, 143, 123 and 137 were identified in fresh onions, decayed onions without heating, half-decayed and complete-decayed onions after heating, respectively. These components included esters, aldehydes, ketones, alcohols and sulfur-containing compounds. Dimethyl trisulfide, dimethyl disulfide, dipropyl trisulfide and 3,5-diethyl-1,2,4-trithiolane were the main sulfur-containing components in fresh onions and decayed onions without heating. As spoilage of onions, the concentrations of sulfur-containing components of volatile extracts significantly decreased. Apart from sulfur-containing components, volatile organic components in half-decayed and complete-decayed onions after heating were mainly composed of esters, aldehydes, ketones and alcohols. Ketones of volatiles in complete-decayed onions after heating were high relatively.

  • PDF

Determination of volatile compounds by headspace-solid phase microextraction - gas chromatography / mass spectrometry: Quality evaluation of Fuji apple

  • Lee, Yun-Yeol;Jeong, Moon-Cheol;Jang, Hae Won
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • The volatile components in 'Fuji' apple were effectively determined by a headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 48 volatile components were identified and tentatively characterized based on National Institute of Standards and Technology (NIST) MS spectra library and the Kovats GC retention index I (RI). The harvested Fuji apples were divided into two groups: 1-methylcyclopropene (1-MCP) treated and non-treated (control) samples for finding important indicators between two groups. The major volatile components of both apples were 2-methylbutyl acetate, hexyl acetate, butyl 2-methylbutanoate, hexyl butanoate, hexyl 2-methylbutanoate, hexyl hexanoate and farnesene. No significant differences of these major compounds between 1-MCP treated and non-treated apples were observed during 1 month storage. Interestingly, the amount of off-flavors, including 1-butanol and butyl butanoate, in 1-MCP treated apples decreased over 5 months, and then increased after 7 months. However, non-treated apples did not show significant changes for off-flavors during 7 month storage (p<0.05). The non-treated apples also contained the higher levels of two off-flavors than 1-MCP treated apples. These two compounds, 1-butanol and butyl butanoate, can be used as quality indicators for the quality evaluation of Fuji apple.

Effect of Electron-Beam Irradiation on Flavor Components in Pear (Pyrus pyrifolia cv. Niitaka) (전자선 조사가 신고배의 향기성분에 미치는 영향)

  • Kim, Won;Shim, Sung-Lye;Ryu, Keun-Young;Jun, Sam-Nyeo;Jung, Chan-Hee;Seo, Hye-Young;Song, Hyun-Pa;Kim, Kyong-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.2
    • /
    • pp.195-202
    • /
    • 2008
  • This study was performed to examine the effects of electron beam irradiation on volatile flavor components of Shingo pear (Pyrus pyrifolia cv. Niitaka) and on their changes according to storing period following irradiation. Volatile flavor components in pear were extracted using simultaneous steam distillation and extraction (SDE) apparatus and analyzed by GC/MS. 46 components were identified in control whereas 45, 44, 48 and 51 components were identified in irradiated samples by electron beam at 0.25, 0.5, 1, and 3 kGy, respectively. Hexanal, n-hexanol, and (E)-2-hexenal were identified as the major volatile flavor components of all samples. The characteristic volatile flavor components of irradiated pear by electron beam were similar to those of control, and their effects depending on irradiation source were not different. In addition, there was no noticeable change in volatile flavor components of pear with storage at $4^{\circ}C$ for 30 days or with irradiation. Sensory evaluation indicated that the consumer receptiveness tended to be higher at a low level of radiation dose under 1 kGy than control, albeit not significant. Therefore, electron beam irradiation at low level of radiation dose under 1 kGy could be considered as an effective method to exterminate vermin and thus to improve the shelf-stability of pear without deterioration.

Study on the Flavour of Garlic Extract (마늘 추출물의 향기성분에 관한 연구)

  • Park, Chul-Jin;Kim, Sang-Duk;Oh, Sung-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.593-595
    • /
    • 1993
  • The volatile components of garlic extracts were investigated. For experiment both crushed- and sliced-garlic were dried by air-drying and freeze-drying methods, followed by ether extraction. The extracts were analysed by GC and GC/MS. Sliced- and freeze-dried garlic extracts showed larger number of volatile components than crushed- and air-dried garlic extracts. The volatile components, allyl propyl disulifde, 2-vinyl-1,3-dithiane, 3-vinyl-〔4H〕-1,2-dithiin, 1,2-Bis (allyl)disulfane were found in sliced- and freeze-dried garlic extracts, methyl allyl trisulfide and 2,4-methyl furane in sliced- and air-dried garlic extracts, and disulfide in crushed- and air-dried garlic extracts.

  • PDF

Comparison of the Cold-Pressed Peel Oil Composition between ]Korean and Japanese Satsuma Mandarin (Citrus unshiu Marcov. forma Miyagawa-wase) by GC, GC-MS and GC-O

  • Park, Hyang-Sook;Sawamura, Masayoshi
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.5-11
    • /
    • 2002
  • The comparison of the volatile flavor components from Korean and Japanese Satsuma mandarin (C. unshiu Marcov. forma Miyagawa-wase) peel oils, isolated by cold-pressing, was performed by gas chromatography, mass-spectrometry and gas chromatography-olfactometry (GC-O). Eighty-five volatile components were identified in each oil by GC and GC-MS. Forty-three components were detected in each oil by GC-O. The total amount of monoterpene hydrocarbons was 95.88% (Korean mandarin) and 95.29% (Japanese mandarin). Limonene, ${\gamma}$-terpinene, myrcene and $\alpha$-pinene were the main components of the cold-pressed oils from the both samples. The volatile composition of the Japanese mandarin was characterized by a higher content of sesquiterpene hydrocarbons, especially bicyclogermacrene, $\alpha$-humullene and valencene. The volatile composition of two samples can easily be distinguished by the percentages of aldehydes, ketones and esters, which were found at higher levels in the Japanese mandarin. The sweet and fruity flavor was stronger in the Korean mandarin oil while herbaceous flavor was stronger in Japanese sample. From GC-O data it is suggested that the sweet and fruity flavor of the Korean mandarin resulted from terpinolene and linalool, and the herbaceous note of the Japanese mandarin from $\alpha$-humullene, nepal, ι-carvone and perill aldehyde.