• Title/Summary/Keyword: volatile compounds

Search Result 2,246, Processing Time 0.032 seconds

High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System (상온 방전 플라즈마-광촉매(Mn-Ti-MCM-41) 복합 시스템에 놓인 고농도 톨루엔의 분해성능)

  • Ban, Ji-Young;Son, Yeon-Hee;Lee, Sung-Chul;Kang, Misook;Choung, Suk-Jin;Sung, Joon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.413-421
    • /
    • 2005
  • This study focused on the decomposition of toluene in a plasma-photocatalytic hybrid system. Hexagonally packed meso-structured Mn-titanosilicates (Mn-Ti-MCM-41), as the photocatalysts, have been prepared by the hydrothermal method. The physical properties of the photocatalysts were characterized using XRD, XPS, TEM, BET/ICP, and $NH_3$/Toluene-TPD. Experiments were carried out at the applied voltage of 9.0 kV and at room temperature of $20^{\circ}C$. In the plasma only system, the activity of the toluene decomposition was higher than that in the photocatalytic system. However, the amount of by-products, such as phenol, $C_2{\sim}C_4$ alkene, was also increased in the plasma only system. However, the by-products decreased remarkably in a plasma-photocatalytic hybrid system. When Mn5mol%-Ti-MCM-41 was used as a photocatalyst in a plasma-photocatalytic hybrid system, the $CO_2$ selectivity in products was increased dramatically compared to other catalysts. It was confirmed that a plasma-photocatalytic hybrid system was better for toluene decomposition compared to photocatalytic and plasma only systems.

Sensitivity of Ozone to NOx and VOCs in a Street Canyon (도로 협곡에서 NOx와 VOCs에 대한 오존의 민감도)

  • Lee, Kwang-Yeon;Kwak, Kyung-Hwan;Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.3
    • /
    • pp.307-316
    • /
    • 2013
  • The sensitivity of ozone to $NO_x$ and volatile organic compounds (VOCs) emission rates under different ventilation rates and $NO_2-to-NO_x$ emission ratios in a street canyon is investigated using a chemistry box model. The carbon bond mechanism IV (CBM-IV) with 36 gaseous species and 93 chemical reactions is incorporated. $NO_x$ and VOCs emission rates considered range from 0.01 to $0.30ppb\;s^{-1}$ with intervals of $0.01ppb\;s^{-1}$. Three different ventilation rates and three different $NO_2-to-NO_x$ emission ratios are considered. The simulation results show that the ozone concentration decreases with increasing $NO_x$ emission rate but increases with increasing VOCs emission rate. When the emission ratio of VOCs to $NO_x$ is smaller than about 4, the ozone concentration is lower in the street canyon than in the background. On average, the magnitude of the sensitivity of ozone to $NO_x$ emission rate is significantly larger than that to VOCs emission rate. As the $NO_x$ emission rate increases, the magnitude of the sensitivity of ozone to $NO_x$ and VOCs emission rates decreases. Because the ozone concentration is lower in the street canyon than in the background, the increased ventilation rate enhances ozone inflow from the background. Therefore, the increase in ventilation rate results in the increase in ozone concentration and the decrease in the magnitude of the sensitivity of ozone to $NO_x$ and VOCs emission rates when the emission ratio of VOCs to $NO_x$ is smaller than about 4. On the other hand, the increase in $NO_2-to-NO_x$ emission ratio results in the increase in ozone concentration because the chemical ozone production due to the $NO_2$ photolysis is enhanced. In the present experimental setup, the contribution of the change in $NO_2-to-NO_x$ emission ratio to the change in the sensitivity of ozone to $NO_x$ emission rate is larger than that of the change in ventilation rate.

The Removal of Styrene using Immobilized Microorganisms in Hydrogel Beads (미생물 고정화 복합고분자담체를 이용한 Styrene 제거)

  • Song, Ji-Hyeon;Ham, Eun-Yi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.648-653
    • /
    • 2006
  • As an alternative for the traditional materials packed in biofilters treating gaseous VOCs, a novel packing material has been developed and tested. In the packing material(named as Hydrogel Bead, HB), pollutant-degrading microorganisms were immobilized in hydrogel consisted of alginate, polyvinyl alcohol(PVA), and powdered activated carbon. A closed-bottle study showed that the HB rapidly removed gaseous styrene without the losses of adsorption and biodegradation capacity. Biofilter column experiments using the HBs also demonstrated that greater than 95% of removal efficiencies were found at an inlet styrene loading rate of $245g/m^3/hr$, which was higher biofilter performance than other elimination capacity reported earlier. Furthermore, when the inlet styrene concentration increased stepwise, the adsorption played an important role in overall styrene removals. The absorbed styrene was found to be biodegraded in the following low inlet loading condition. Consequently, the new HB material is able to successfully minimize the drawbacks of activated carbon(necessity of regeneration) and biological processes(low removal capacity at dynamic loading conditions), and maximize the overall performance of biofilter systems treating VOCs.

The study for VOCs analysis in long path by open path FT-IR spectrometer (Open path FT-IR spectrometer를 사용한 원거리의 VOCs 측정에 관한 연구)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • The harmful materials as volatile organic compounds (VOCS) that is easy for gas to be changed from liquid on ambient temperature, those should be controlled by Korea Chemicals Management Association. The VOCs samples should be collected directly in place so that those could be analyzed. Generally but it couldn't avoid to have the risk of analyst. Moreover, if there is the place limited to entrance, it is impossible to collect directly and measure. Owing to such problem, it tried to be solved by open path FT-IR spectrometer that could be studied on the combustion gases within long path and VOCs samples were tried to measure to large volume by remote and real time. Firstly, it was to investigate optimized measured length between the system and benzene sample of VOCs. As result, The optimized measured length was confirmed with 15 meter length and the qualitative analysis could be measured on seven VOC samples. The calibration curve as quantitative analysis of benzene samples could be worked. On the basis of the result, the system as remote monitor could show to have potentiality.

Sthdies on the Adaptability for Frozen fish Meat Paste Processing of the Fishes Cought in korean coastal Off-Shore Sea (냉동연육 원료로서연근해산 어류의 가공적성 검사연구)

  • 류지동;이성갑
    • Journal of the Korean Professional Engineers Association
    • /
    • v.32 no.4
    • /
    • pp.104-118
    • /
    • 1999
  • Alaska Pollack (Theragramma), Mackerel (Socomber japonicus), yellow corvenia (Pseudosc iance manchurica) were dressed, and then meat was separated from the other parts through a fish meat separator. After dehydration, the meat was ground with a silent cutter, packaged in polyethylene bags, and stored at -15。C for days. Samples were taken at regular intervals throughout the storage period and investigated for changes in puality characteristics such as the amounts of nitrogenous compounds, degree of lipid oxidation, fatty acid composition, and organoleptic factors. The resrlts obtained in this study were as follows; 1. The volatile basic nitrogen[VBN] contents of Alaska pollack, and yellow corvenia meat pastes increased from 14.4, 11.2 and 10.8mg% to 41.6, 38.3 and 40.6mg%, respectively during a 120 day storage period, whereas the trimethylamine oxide nitrogen [TMAO-N] contents decreased from 117.2, 12.8 and 17.2mg% to 40.3, 2.6 and 7.1mg% during the same period. 2. The TBA value of the mackerel meat paste showed a maximum peak after 60 days, and then decreased gradually, whereas the TBAvalues of the alaska pollack and yellow corvenia meat pastes increased steadily during the same period. The acid values of the meat pastes increased during the storage period, while the iodine values decreased. 3. The fatty acid composition of the total lipid of the meat pastes changed considerably during ghe 120 days storage period : saturated fatty acids in the total lipid such as myristic, palmitic, and stearic acid increased, while unsaturated fatty acids such as linoleic, gadoleic, eicosapentaenoic, erucic and docosahexaenoic acid decreased steadily. The initial percentage contents of the unsaturated fatty acids in the total lipid of the Alaska pollack, mackerel, and yellow corvenia meat pastes were 87.2%, 63.9%, and 75.9% respectively. However, the contents decreased to 46.0%, 42.5% and 51.3% after the 120day storage period. 4. The color of the meat pastes changde gradually into dark brown. L values of the meat paste measured with a thistimulus colorimeter decreased steadily during the storage period, while a and b values increased during same period. 5. Judging from the results of organoleptic evaluation on the fish odor, color and overall acceptability, significant difference were found between the odor and color of the mackerel and those of the yellow corvenia meat pastes. Overall acceptability score of yellow corvenia was higher than that of Alaska pollack or mackerel meat pastes.

  • PDF

Antimicrobial Effect of Mouthwash against Streptococcus mutans by Visual Staining Method (시각적 염색 방법을 이용한 마우스워시의 구강균에 대한 항균효과 확인)

  • Park, Taehun;Cho, Jeong Hun;Sung, Youngeun;Cho, Jun-Cheol;Shin, Kyeho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.187-193
    • /
    • 2014
  • Dental caries are one of the most common oral diseases and Streptococcus mutans (S. mutans) plays an important role in the initiation and progression of dental caries. Oral malodor is primarily the result of microbial metabolism such as Porphyromonas gingivalis (P. gingivalis) that produce volatile sulfur compounds (VSCs), causing oral malodor. Prevotella intermedia (P. intermedia) is known as typical periodontopathic bacteria, and periodontal disease is chronic inflammatory disease that leads to damage of gingival connective tissue and alveolar bone, eventually loss of teeth. In this study, we investigated antimicrobial effect of mouthwash containing cetylpyridinium chloride (CPC), sodium fluoride (NaF), green tea water extract and pine needles water extract against cariogenic and periodontopathic bacteria sucn as S. mutans, P. gingivalis and P. intermedia. As a result, the reduction ratios of S. mutans and P. gingivalis were 4.00 Log and 4.68 Log reduction for 30 s, and P. intermedia were 2.40 Log reduction for 30 s and 2.70 Log reduction for 60 s. Dentocult SM Strip mutans (SM Strip) provides easy detection of visual data showing a significant inhibition on S. mutans. In conclusion, we expected that mouthwash containing CPC, NaF, green tea water extract and pine needles water extract could help preventing the dental disease like dental caries and oral malodor.

The Assessment and Recognition on Indoor Air Quality at Schools in Korea (전국 일부 학교 건축물 내의 실내 공기 및 인식도 조사)

  • Sohn Jong-Ryeul;Yoon Seung-Uk;Kim Jong-Hyuk;Lee Yong-Sik;Choi Han-Young;Kim Young-Sung;Son Bu-Soon;Yang Won-Ho;Kim Min-Hoi
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.1-9
    • /
    • 2005
  • Recently, indoor air quality (IAQ) in workplace, residential environments and schools has been concerned of people, scientists and related the public, and has recognized the healthy effectsrelated to IAQ, specially in schools in Korea. Therefore, objectives of this study in this study were to measure and compare the perception of TAQ of selected air pollutants in Seoul from April to September 2004. Measurement place measured 2 schools of Seoul and local 9 schools (by Kyonggi Province, Chungchong-bukdo Chungchong-namdo, Chollado-bukdo, Cholla-namdo, Kyongsang-bukdo, Kyongsang-namdo, Kwangju, schoolin Pusan each 1 place). Temperature, humidity, illumination, carbon monoxide, carbon dioxide, TBC (total bacteria count), noise, PM10, TVOC(total volatile organic compounds), HCHO (formaldehyde) were measured simultaneously. Also, we Performed a questionnaire survey of 250 students and 50 teachers about their awareness for the importance of IAQ in their schools. Among this article, we handled noise, carbon monoxide, carbon dioxide, TBC, TVOC, HCHO, PM 10 in our conclusion. Major results were as follows ; Carbon monoxide (CO) was lower than indoor air standard of Korea. Carbon dioxide $(CO_2)$ appeared that 4 schools among our sample target school exceeded in normal standard. 4 schools were almost similar with normal standard. TBC appeared that 7 schools among 11 schools were higher than standard. Noise measured school's mean value passed exceeded standard. And school which passed over standard appeared to 7 schools among 11 schools. HCHO was exceeded 4 schools by standard that excess and certainly interrelation between school's establishment year and facilities of construction was detected. PM10 was exposed all schools by fitness in standard. TVOC appeared that 9 schools among 11 measurement school was exceeded health effect standard of Japan.

Quality Characteristics of Garlic Suspensions Using Protopectin Hydrolytic Enzymes (Protopectinase를 이용하여 제조한 마늘 단세포화물의 품질특성)

  • Baek Ku-Hyoun;Kim Sung-Soo;Tak Sang-Bum;Kang Byung-Sun;Kim Dong-Ho;Lee Young-Chun
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.351-356
    • /
    • 2006
  • This study was carried out to investigate the change of functional component and volatile flavor components from garlic for which both were treated with protopectinase (PPase) and mechanical maceration during storage period. Alliin content of gallic suspensions macerated mechanically were 11.0 mg/g at 0 day and 6.6 mg/g at 24 day. Whereas alliin content of garlic treated with PPase were 8.5 m/g at 0 day and 7.0 mg/g at 24 day. Importantly, over 40% of alliin which is the most unstable component during the mechanical maceration remained with an intact form for 24 day after the enzymatic treatment. The flavor component from gallic suspensions were extracted by solid-phase microextraction (SPME) and were analyzed and identified by gas chromatography (GC) and chromatography/mass spectrometry (GC/MS). The number and concentrations of flavor components of gallic macerated mechanically were increased during storage period, and total 18 kinds of flavor compounds were identified. Thus, the PPase treatment of garlic could be a better choice for preparation of the highly valuable and functional processed food as well as for prolonging the preservation period.

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.

Physicochemical Properties of Gamgug (Chrysanthemun indicum L.) (감국의 이화학적 성상)

  • 신영자;전정례;박금순
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.146-151
    • /
    • 2004
  • To evaluate a gamgug (Chrysanthemun indicum L.) as a new food material, its physicochemical properties were analyzed. The proximate compositions of gamgug were that the moisture content 10.51%, 9.38% for crude protein, 3.47% for lipid, 4.87% for ash, 13.12% for reduing sugar, 9.03% for crude fiber, and 0.74% for vitamin C, respectively. The essential amino acid contained in gamgug accounted for 41.42% of the total amino acid, while the non-essential amino acid accounted for 58.58%. It was shown that the fatty acid consisted of 6 different kinds, of which 22.63% for palmitic acid followed by 17.51% for linoleic acid, 12.76% for linolenic acid, 4.36% for myristic acid, 3.16% for oleic acid, and 0.61% for stearic acid, respectively. The content of minerals was that K was 847.4 $\mu\textrm{g}$/g which was the largest, Mg 369.0 $\mu\textrm{g}$/g, Ca 300.8 $\mu\textrm{g}$/g, and Na 61.4 $\mu\textrm{g}$/g, respectively. It was also shown that gamgug contained 45 different kinds of volatile flavor compounds, of which a docosane accounted for 9.4%, a benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl-benzene for 5.8%, and camphor for 5.4%, respectively.