• Title/Summary/Keyword: volcanic eruption

Search Result 161, Processing Time 0.024 seconds

Analysis of the relationship between volcanic eruption and surface deformation in volcanoes of the Alaskan Aleutian Islands using SAR interferometry

  • Lee, Seulki;Lee, Chang-Wook
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1069-1080
    • /
    • 2018
  • The Alaskan Aleutian Islands form one of the world's largest volcanic island chains. The islands are exposed to both direct and indirect damage from continuous volcanic eruptions. Surface deformation is mostly observed before volcanic eruption, but with some volcanoes, such as Ontake Volcano, deformations cannot be detected. In this study, we analyzed volcanic eruptions in the Alaskan Aleutian Islands, which is a region of frequent volcanic eruptions. Based on our results, we predicted the type of eruption that would occur on Baekdusan Volcano according to the presence or absence of surface deformation. For this purpose, 10 sites were selected from areas where recent volcanic activity had occurred in the Aleutian Islands. Additionally, Advanced Land Observing Satellite Phased Array-type L-band Synthetic Aperture Radar (ALOS-PALSAR) and European Remote Sensing (ERS)-1/2 satellite data were obtained from 10 experimental sites. Based on the radar satellite data, the volcanic surface deformations were identified, and the characteristics of the volcanic eruption were quantitatively calculated by determining the presence of surface deformation. The results of this study should facilitate the process of correlation between volcanic eruption and surface deformation.

High Atmospheric Loading for $SO_2$ and Sulfate Observed in the Kanto Area, Japan During the Miyakejima Volcanic Eruption

  • Ma, Chang-Jin;Cao, Renqiu;Tohno, Susumu;Kasahara, Mikio
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.69-77
    • /
    • 2006
  • Combined gas and aerosol measurements at a downwind area of the volcanic plume would be essential for helping to access the impact of the volcanic eruption on the local ecosystem and residents. An intensive and the fine time resolution measurement of $SO_2$, sulfate and PM2.5 was made to estimate their distribution in the Kanto area of Japan during the Miyakejima volcanic eruption period. In Tokyo, the 1 hr average $SO_2$ concentration observed before the eruption was 23.9 ppbv, while that of after eruption was 140.4 ppbv. In the Saitama Prefecture, the average concentration of $SO_2$ marked in the present study was two times higher than the average before the volcanic eruption. The PM2.5 mass concentrations in Sitama ranged from 3.8 to $136{\mu}g\;m^{-3}$. Sulfate accounts for $4.4{\sim}39.6%$ of PM2.5 in Sitama. The good correlationship between the concentrations of $SO_2$ and sulfate was obtained. The results of the VAFTAD and HYSPLIT models indicate that $SO_2$, sulfate, and PM2.5 measured in the present study would be expected to be significantly affected by the Miyakejima volcanic plume.

Ocean Response to the Pinatubo and 1259 Volcanic Eruptions

  • Kim, Seong-Joong;Kim, Baek-Min
    • Ocean and Polar Research
    • /
    • v.34 no.3
    • /
    • pp.305-323
    • /
    • 2012
  • The ocean's response to the Pinatubo and 1259 volcanic eruptions was investigated using an ocean general circulation model equipped with an energy balance model. Volcanic eruptions release gases into the atmosphere which increases the aerosol optical depth and acts to reduce the incoming short-wave radiation. For example, there was a huge volcanic eruption (Pinatubo) in 1991 which reduced the global mean radiative forcing by about 3 W $m^{-2}$. Two numerical experiments were simulated. The first experiment features the Pinatubo eruption and the second experiment simulates the much larger volcanic eruption that occurred in 1259 when the radiative forcing was reduced by 7 times compared to the Pinatubo event. With the reduced radiative forcing due to the Pinatubo eruption at about 3 W $m^{-2}$ and 1259 eruption at about 21 W $m^{-2}$, the global mean sea surface temperature (SST) decreased to its lowest in the second year after each event by about $0.4^{\circ}C$ and $1.6^{\circ}C$, respectively. Sea surface salinity (SSS) increased substantially in the northern North Pacific, northern North Atlantic, and the Southern Ocean. The reduced SST together with SSS increased ocean convection, which yielded an increase in North Atlantic Deep Water, Antarctic Bottom Water, and North Pacific Intermediate Water production and their outflows. The increase in overturning circulation eventually increased the pole-ward ocean heat fluxes. In conclusion, huge volcanic eruptions perturb the ocean substantially and their hallmarks last for more than a decade, confirming the importance of volcanic eruptions in illustrating the decadal-climate variability recorded in the paleoclimate proxy data for the past million years.

Review about the Impacts from Volcanic Ash Fall (화산재 강하로부터의 영향 고찰)

  • Lee, Jeonghyun;Yun, Sung-Hyo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.73-86
    • /
    • 2020
  • The materials generating from volcanic eruption are volcanic gases, lavas and pyroclastic materials. Volcanic ash which has small-grain size (< 2 mm in diameter) can be moved easily and disperse widely, thus it may affect to communities across hundreds of square kilometers. The impacts from volcanic ash fall on people, structures, equipments, plants and livestock largely depend on ash thickness. According to increasing ash thickness, the intensity and area of damage may increase and affect significant damages not to human health but also to infrastructures. To reduce the impacts from volcanic ash fall, we have to establish the guidances about the nature and extent of the hazard and prepare the actions to increase abilities of communities to manage hazard. Although we don't have any experience caused by volcanic ash fall during and after volcanic eruption, we need to prepare the impacts of volcanic ash fall for future eruption in the areas surrounding Korea.

A Preliminary Study on Calculating Eruptive Volumes of Monogenetic Volcanoes and Volcanic Hazard Evaluation in Jeju Island (제주도 단성화산의 분화량 계산과 화산재해 평가에 대한 예비연구)

  • Ko, Bokyun;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.143-149
    • /
    • 2016
  • Eruptive volumes of three monogenetic volcanoes (Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone) with the youngest eruption age are calculated using the model, applied to Auckland Volcanic Field in New Zealand, to investigate the volcanic eruption scale and to evaluate volcanic hazard of Jeju Island. Calculated eruptive volumes of the volcanoes are $24,987,557m^3$, $9,652,025m^3$, and $11,911,534m^3$, respectively, and the volumes include crater infill, tuff ring (tuff cone), scoria cone, and lava flow. Volcanic explosivity indices of Songaksan tuff ring, Biyangdo scoria cone, and Ilchulbong tuff cone are estimated based on the eruptive volumes to be 3, 2, and 3 respectively, and eruption type is Strombolian to Surtseyan. It is assumed that the amount of emitted sulfur dioxide gas is $2-8{\times}10^3kt/y$ according to the correlation between volcanic explosivity index and volcanic sulfur dioxide index. Recent age dating researches reveal evidences of several volcanic activities during the last 10,000 years indicating the possible volcanic eruption in Jeju Island in the near future. Therefore, it is necessary for appropriate researches regarding volcanic eruption of the island to be accomplished. In addition, establishment of the evaluation and preparation system for volcanic hazard based on the researches is required.

The 2014 Eruption and Precursors of Ontake Volcano, Japan (일본 온타케 화산의 2014년 분화와 전조현상)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.405-418
    • /
    • 2014
  • Ontake Volcano, Japan, began to erupt without any precursors on September 27, 2014, at 11:52 AM, and it caused many losses of life. Although Japan's preparation manual and prevention for volcanic eruptions and volcanic hazards has been well established, it could not prevent damage due to the sudden eruption of the volcano. Soon after the eruption, however, Japan Meteorological Agency (JMA) led many organizations and institutions, including JMA's Volcanic Eruption Prediction Liaison Council, Meteorological Research Institute (MRI) and National Agriculture and Food Research Organization and they understood the eruption situation quickly and shared the information based on their close cooperation and contact systems. Through these efforts, JMA published the unified result to the public, informing the public of the situation around the volcano and about the eruption and of how the residents and climbers around the volcano should react to the volcanic hazards caused by the eruption. The Korean Government can learn how to respond to a future eruption of a volcano, such as Mt. Baekdu which has the potential to erupt in the foreseeable future.

Risk Analyses from Eruption History and Eruptive Volumes of the Volcanic Rocks in Ulleung Island, East Sea (울릉도 화산암류의 분화이력과 분출량에 따른 위험도 분석)

  • Hwang, Sang Koo;Jo, In Hwa
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • We estimate the eruption history and magmatic eruptive volumes of each rock units to evaluate the volcanic eruption scale and volcanic hazard of the Ulleung Island. Especially, Maljandeung Tuff represents about 19~5.6 ka B.P. from $^{14}C$ dating, and Albong Trachyandesite, about 0.005 Ma from K-Ar dating in recent age dating data. These ages reveal evidences of volcanic activities within the last 10,000 years, indicating that the Ulleung Island can classify as an active volcano with possibility of volcanic eruption near future. Accumulated DRE-corrected eruptive volume is calculated at $40.80km^3$, within only the island. The calculated volumes of each units are $3.71km^3$ in Sataegam Tuff, and $0.10km^3$ in Maljandeung Tuff but $12.39km^3$ in accounting the distal and medial part extended into southwestern Japan. Volcanic explosivity indices range 1 to 6, estimating from the volumes of each pyroclastic deposits. The colossal explosivity indices are 5 in Sataegam Tuff, and 6 in Maljandeung Tuff in accounting the distal and medial part. Therefore, it is necessary for appropriate researches regarding possibility of volcanic eruption of the island, and establishment system of the evaluation and preparation for volcanic hazard based on the researches is required.

An Analysis on Influence Area by the Simulation over Mt. Baekdu Eruption (시뮬레이션에 의한 백두산 화산분출 영향범위 분석)

  • Kim, Nam-Sin
    • Journal of the Korean association of regional geographers
    • /
    • v.17 no.3
    • /
    • pp.348-356
    • /
    • 2011
  • Someday Mt. Baekdu could erupt by records of orogeny activity until today. This study is to predict influence area of lava flow and volcanic ash by simulation of volcanic eruption in the Mt. Baekdu. Simulation for eruption applied to supposing 7 grade of volcanic explosivity index, season from fall to spring. As a simulation results, lava flewed down into slope of China and volcanic ash diffused over the North Korea. Volcanic ash spreads to Ulneung area after nine hours. It was predicted that 61 cities and villages out of 27 administrative districts of Si-Gun were affected by volcanic ash in North Korea and an immense volume of volcanic ash was blown into farm lands, city areas and forests. This results expected to utilize information for disaster preparation of North Korea and joint research with South-North Korea and China.

  • PDF

Detection for Region of Volcanic Ash Fall Deposits Using NIR Channels of the GOCI (GOCI 근적외선 채널을 활용한 화산재 퇴적지역 탐지)

  • Sun, Jongsun;Lee, Won-Jin;Park, Sun-Cheon;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1519-1529
    • /
    • 2018
  • The volcanic ash can spread out over hundreds of kilometers in case of large volcanic eruption. The deposition of volcanic ash may induce damages in urban area and transportation facilities. In order to respond volcanic hazard, it is necessary to estimate efficiently the diffusion area of volcanic ash. The purpose of this study is to compare in-situ volcanic deposition and satellite images of the volcanic eruption case. In this study, we used Near-Infrared (NIR) channels 7 and 8 of Geostationary Ocean Color Imager (GOCI) images for Mt. Aso eruption in 16:40 (UTC) on October 7, 2016. To estimate deposit area clearly, we applied Principal Component Analysis (PCA) and a series of morphology filtering (Eroded, Opening, Dilation, and Closing), respectively. In addition, we compared the field data from the Japan Meteorological Agency (JMA) report about Aso volcano eruption in 2016. From the results, we could extract volcanic ash deposition area of about $380km^2$. In the traditional method, ash deposition area was estimated by human activity such as direct measurement and hearsay evidence, which are inefficient and time consuming effort. Our results inferred that satellite imagery is one of the powerful tools for surface change mapping in case of large volcanic eruption.

A Study of the Development and Utilization Plan of Volcanic Disaster Response System based on Spatial Information (공간정보기반 화산재해대응시스템 개발 및 활용방안 연구)

  • Kim, Tae-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.7357-7363
    • /
    • 2014
  • Korea had been known as safe region regarding volcanic disasters. On the other hand, Baekdu mountain experienced a large eruption one thousand years ago and the precursor phenomena for a volcanic eruption have been frequently reported these days. Therefore, a number of volcano experts, who warn of a volcanic eruption on the Korean peninsula, has increased. This paper describes the utilization plan and evolution of developing volcanic disaster response system based on spatial information and scientific modeling process for Baekdu mountain. First, the business processes for volcanic disaster response are derived based on an analysis of business system and related IT-based systems. Second, the design and development of a volcanic disaster response system are derived based on the business process. Third, a utilization plan is suggested to maximize the efficiency of the system. The application of the suggested volcanic disaster response system to NEMA, additional tests and system supplementation should be carried out. The complete volcanic disaster response system, which will be implemented based on this research, is expected to minimize the volcanic disaster damage in the area of Korea, China and Japan.