• 제목/요약/키워드: voltage doubler rectifier

검색결과 51건 처리시간 0.026초

비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터 (High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation)

  • 양민권;최우영
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.

PDP 유지전원단을 위한 높은 효율을 갖는 새로운 페이지쉬프트 풀브릿지 컨버터 (A New High Efficiency Phase Shifted Full Bridge Converter for Sustaining Power Module of Plasma Display Panel)

  • 이우진;김정은;한상규;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.445-448
    • /
    • 2005
  • PDP 유지전원단을 위한 고효율을 갖는 새로운 페이지 쉬프트 풀브릿지 컨버터를 제안한다. 제안된 컨버터는 Rectifier로 Voltage Doubler를 사용함으로서, 큰 사이즈의 Output Inductor가 없게 되어 간단한 구조를 가지게 되며 Rectifier Diodes의 전압 스트레스가 출력전압으로 클램핑되어서 스너버회로가 필요없다는 장점을 가지게 된다. 또한 넓은 영전압 스위칭 구간을 가지며, 트랜스포머의 기생성분인 Leakage 인덕터와 Voltage doubler의 캐패시터간의 공진을 이용함으로서 전류가 작은 RMS값을 가지게 되어서 낮은 도통손실과 Rectifier Diode의 전류 스트레스 또한 낮다는 장점을 가지게 된다. 본 논문을 통해 제안된 컨버터의 동작원리와 해석, 실험을 수행하였다.

  • PDF

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • 제6권1호
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.

Rectifier Design Using Distributed Greinacher Voltage Multiplier for High Frequency Wireless Power Transmission

  • Park, Joonwoo;Kim, Youngsub;Yoon, Young Joong;So, Joonho;Shin, Jinwoo
    • Journal of electromagnetic engineering and science
    • /
    • 제14권1호
    • /
    • pp.25-30
    • /
    • 2014
  • This paper discusses the design of a high frequency Greinacher voltage multiplier as rectifier; it has a greater conversion efficiency and higher output direct current (DC) voltage at high power compared to a simple halfwave rectifier. Multiple diodes in the Greinacher voltage multiplier with distributed circuits consume excited power to the rectifier equally, thereby increasing the overall power capacity of the rectifier system. The proposed rectifiers are a Greinacher voltage doubler and a Greinacher voltage quadrupler, which consist of only diodes and distributed circuits for high frequency applications. For each rectifier, the RF-to-DC conversion efficiency and output DC voltage for each input power and load resistance are analyzed for the maximum conversion efficiency. The input power with maximum conversion efficiency of the designed Greinacher voltage doubler and quadrupler is 3 and 7 dB higher, respectively;than that of the halfwave rectifier.

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.

배압 회로를 이용한 인터리브 AC/DC 컨버터의 효율 특성에 관한 연구 (A Study on the Efficiency of Intereaved AC/DC Converter using Voltage-Doubler)

  • 서상화;김용;배진용;이은영;권순도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.961_962
    • /
    • 2009
  • A novel, two-inductor, interleaved power-factor-corrected (PFC) boost converter that exhibits voltage-doubler characteristic when it operates with a duty cycle greater than 0.5 is introduced. The voltage-doubler characteristic of the proposed converter makes it quite suitable for universal-line (90~265VRMS) PFC applications. Because the proposed PFC boost rectifier operates as a voltage doubler at low line, its low-line range efficiency is greatly improved compared to that of its conventional counterpart. The performance of the proposed PFC rectifier was evaluated on an experimental 300W PFC prototype.

  • PDF

Low price Fuel Cell Inverter System for 3[KW] Residential Power

  • Kwon, Soon-Kurl
    • 조명전기설비학회논문지
    • /
    • 제21권4호
    • /
    • pp.61-72
    • /
    • 2007
  • This study proposed a high efficiency DC-DC converter with a new current doubler rectifier for fuel-cell systems for use with the Nexa(310-0027) PEMFC from the Ballard Co. The proposed high efficiency DC-DC converter for the fuel-cell system generated ZVS by applying partial resonance and using a phase shift PWM control method. Constantly switching frequency, loss of switching, peak current, and peak voltage were reduced by this system. In addition to this system, two inductors were attached to a rectifier circuit allowing it to be able to provide the direct current(DC) and DC voltage safely to a load with reduced ripple components. Also, by using the newly proposed current doubler rectifier, the high frequency DC-DC converter for the fuel cell system was capable of reaching a highest efficiency of 92[%] as compared to 88.3[%] efficiency in previous results, which means that efficiency increased 3.7[%]. The overall results were confirmed by a simulation and laboratory experiment.

저전압 대전류용 개방형 DC-DC 컨버터 모듈에 관한 연구 (A Study on Open-frame Type DC-DC Converter Module for Low-Voltage High-Current Applications)

  • 안태영;황선민;조인호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권4호
    • /
    • pp.183-190
    • /
    • 2003
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and current doubler rectifier. The converter module is designed with the specifications of an 1.8V output voltage, 25A output current, and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction fuss at high current level and current-mode control is adapted to enhance the flexibility in the system configuration. A prototype converter module is successfully implemented within 10mm height and half brick size (58${\times}$61mm), and recorded an 84% efficiency and 4% voltage regulation for the entire input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

저전압 대전류용 개방형 DC-DC 컨버터 모듈에 관한 연구 (A Study on Open-frame Type DC-DC Converter Module for Low-Voltage High-Current Applications)

  • 안태영;황선민;조인호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권4호
    • /
    • pp.183-183
    • /
    • 2003
  • We report the performance of an open-frame type low-voltage high-current DC-DC converter module developed using an active clamp forward converter circuit and current doubler rectifier. The converter module is designed with the specifications of an 1.8V output voltage, 25A output current, and 36-75V input voltage. The synchronous rectifier is used to reduce the conduction fuss at high current level and current-mode control is adapted to enhance the flexibility in the system configuration. A prototype converter module is successfully implemented within 10mm height and half brick size (58×61mm), and recorded an 84% efficiency and 4% voltage regulation for the entire input voltage range, thereby demonstrating its application potentials to future telecommunication electronics.

A Study on the Secondary Rectification-Methods for the Three-Level Converter

  • Bae, Jin-Yong;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권1호
    • /
    • pp.81-88
    • /
    • 2007
  • This paper proposes a coupled inductor-based rectifier of a Three-Level (TL) DC/DC converter and compares the rectification methods of a TL converter. The CICDR- TL (Coupled Inductor Current Doubler Rectifier Three-Level) converter achieves ZVS (Zero Voltage Switching) for the switches in a wide load range. CDR (Current Doubler Rectifier) and CICDR Three-Level converter have low voltage and current ripple. Advantages and disadvantages of topology compared to the rectifier of bridge, center-tap, CDR, and CICDR are discussed. Experimental estimation results are obtained on a 27V, 60A DC/DC TL converter prototype for the 1.8kW, 40kHz IGBT based experimental circuit.