• Title/Summary/Keyword: volume fraction

Search Result 2,379, Processing Time 0.03 seconds

The Influence of Volume Fraction and Fiber Orientation of CERP Layer on Flexural properties of A17075/CFRP Multi-Layered Hybrid Laminate Material (Al Shee/CFRP 다적층 하이브리드 복합재료의 굴곡강도에 미치는 카본섬유 체적률 및 배열방향 영향)

  • Yoo Jae-hwan
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.31-35
    • /
    • 2004
  • The A17075/CFRP multi-layered hybrid laminate material consists of the alternating A17075-T6 sheets and carbon/epoxy prepregs of M40 fade. The influence of volume fraction and fiber orientation of A17075/CFRP layer on flexural properties of A17075/CFRP laminate alternating A17075-T6 and carbon/epoxy prepreg was investigated. The results obtained from the experimental analysis are as follows: 1. In the $0^{\circ}$ fiber orientation, the mont of increase of the flexural rigidity was $20.5\%$ at the $26.5\%$ volume fraction and $38.0\%\;at\;the\;35.7\%$ volume fraction compared with the flexural rigidity level(20.0GPa) of the $10\%$ volume fraction of CFRP. 2. In the $\pm45^{\circ}$ fiber orientation the amount of decrease of the flexural rigidity was $23.5\%\;at\;the\;20.0\%$ volume fraction and $31.5\%\;at\;the\;33.3\%$ volume fraction compared with the flexural rigidity level of the $10\%$ volume fraction of CFRP. 3. In the $0^{\circ}$ fiber orientation, the flexural strength was 481.5MPa at the $10\%$ volume fraction of CFRP and 583.8MPa at the $26.5\%$ volume fraction and 653.7MPa at the $35.7\%$ volume faction. 4. In the $\pm45^{\circ}$ fiber orientation, the flexural strength was 354.0MPa at the $20.0\%$ volume fraction of CFRP and 340.5MPa at the $33.3\%$ volume fraction.

The Effects of Microstructure in Austenitic 316L Stainless Steels on the Strength and Damping Capacity (오스테나이트계 316L 스테인리스강의 강도 및 감쇠능에 미치는 미세조직의 영향)

  • SON DONG-WOOK;LEE JONG-MOON;KIM HYO-JONG;NAM KI-WOO;PARK KYU-SEOP;KANG CHANG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.1-6
    • /
    • 2006
  • The effects of microstructure on the damping capacity and tensile properties of 316L stainless steel were investigated. Increasing the degree of cold working, the volume fraction of $\varepsilon-martensite$ decreased after rising to maximum value at specific level of cold working, the volume fraction of d-martensite slowly increased and then dramatically increased from the point of decreasing $\varepsilon-martensite$ volume fraction. Increasing the degree of cold working, the behnvior of damping capacity is similar to that of the $\varepsilon-martensite$. After the damping capacity showing the maximum value at about $20\%$ of cold rolling, damping capacity was decreased with the volume fraction of $\varepsilon-martensite$. Tensile strength was proportional to the volume fraction of d-martensite, and elongation steeply decreased in the range low volume fraction of a'-martensite, then slowly decreased in range the above $10\%$ volume fraction of d-martensite. The damping capacity and elongation is strongly controlled by the volume fraction of $\varepsilon$ martensite with liner relationship. However, the effect of the volume fraction of d-martensite and austenite phase on the damping capacity was not observed. Tensile strength was governed by the volume fraction of d-martensite.

Local nanofiller volume concentration effect on elastic properties of polymer nanocomposites

  • Shin, Hyunseong;Han, Jin-Gyu;Chang, Seongmin;Cho, Maenghyo
    • Multiscale and Multiphysics Mechanics
    • /
    • v.1 no.1
    • /
    • pp.65-76
    • /
    • 2016
  • In this study, an influence of local variation of nanoparticulate volume fraction on the homogenized elastic properties is investigated. It is well known that interface effect is dependent on the radius and volume fraction of reinforced nanofillers. However, there is no study on the multiscale modeling and analysis of polymer nanocomposites including polydispersed nanoparticles with consideration of interphase zone, which is dependent on the volume fraction of corresponding nanoparticles. As results of numerical examples, it is confirmed that an influence of local variation of nanoparticulate volume fraction should be considered for non-dilute system such as cluster of nanoparticles. Therefore representative volume element analysis is conducted by considering local variation of nanoparticle volume fraction in order to analyze the practical size of cell including hundreds of nanoparticles. It is expected that this study could be extended to the multiparticulate nanocomposite systems including polydispersed nanoparticles.

Effect of Aging on the Microstructure and Mechanical Properties in Super Duplex Stainless Steel (슈퍼 2상 스테인리스강의 미세조직 및 기계적 성질에 미치는 시효의 영향)

  • Kim, Su-Chun;Kang, Chang-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.40-45
    • /
    • 2009
  • With the increase in the annealing temperature, the volume fraction of austenite phase increased and the volume fraction of ferrite phase decreased. In compliance with the addition of N, not only the volume fraction of austenite phase was increased but also the austenite structure was made larger. Volume fraction of ${\sigma}$ phase was increased by decreasing of the volume fraction of ferrite phase, with the increase in the aging time and in compliance with the addition of N. As increasing in volume fraction of ${\sigma}$ phase, tensile strength and hardness increased, while elongation and impact value decreased. Elongation slowly decreased and impact value rapidly decreased at the early stage of aging. By the added N, tensile strength, elongation, hardness and impact value was increased.

Measurement of Volume Fraction of ${\varepsilon}$ Martensite using Specific Volume Difference in Fe-Mn Based Alloys (Fe-Mn 계 합금에서 비부피 차를 이용한 ${\varepsilon}$ 마르텐사이트의 부피분율 측정)

  • Jee, K.K.;Han, J.H.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.211-215
    • /
    • 2003
  • In this work, a new way of measuring the volume fraction of e martensite in Fe-based alloys has been proposed. Since the specific volume of ${\varepsilon}$ martensite, depending on alloy composition, is smaller than that of austenite i.e ${\gamma}$ phase, volume expansion takes place during ${\varepsilon}{\rightarrow}{\gamma}$ reverse transformation. As the amount of the volume expansion is proportional to the product of specific volume difference times the volume fraction of ${\varepsilon}$ martensite, the volume fraction of ${\varepsilon}$ martensite can be calculated by measuring the volume expansion and the specific volume difference. Such a relationship was confirmed in Fe-21Mn and Fe-32Mn-6Si alloys which undergo ${\gamma}{\rightarrow}{\varepsilon}$ martensitic transformation on cooling and by cold rolling, respectively. It was also found that the former has isotropic ${\varepsilon}$ martensite while the latter has anisotropic ${\varepsilon}$ martensite.

Free vibration of imperfect sigmoid and power law functionally graded beams

  • Avcar, Mehmet
    • Steel and Composite Structures
    • /
    • v.30 no.6
    • /
    • pp.603-615
    • /
    • 2019
  • In the present work, free vibration of beams made of imperfect functionally graded materials (FGMs) including porosities is investigated. Because of faults during process of manufacture, micro voids or porosities may arise in the FGMs, and this situation causes imperfection in the structure. Therefore, material properties of the beams are assumed to vary continuously through the thickness direction according to the volume fraction of constituents described with the modified rule of mixture including porosity volume fraction which covers two types of porosity distribution over the cross section, i.e., even and uneven distributions. The governing equations of power law FGM (P-FGM) and sigmoid law FGM (S-FGM) beams are derived within the frame works of classical beam theory (CBT) and first order shear deformation beam theory (FSDBT). The resulting equations are solved using separation of variables technique and assuming FG beams are simply supported at both ends. To validate the results numerous comparisons are carried out with available results of open literature. The effects of types of volume fraction function, beam theory and porosity volume fraction, as well as the variations of volume fraction index, span to depth ratio and porosity volume fraction, on the first three non-dimensional frequencies are examined in detail.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

The Effect of Fiber Volume Fraction Non-uniformity through Thickness Direction on the Torsional Buckling Load of Cylindrical Composite Lattice Structure (두께방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 비틀림 좌굴 하중에 미치는 영향)

  • Min-Hyeok Jeon;Hyun-Jun Cho;Yeon-Ju Kim;Mi-Yeon Lee;In-Gul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.80-85
    • /
    • 2023
  • A cylindrical composite lattice structure is manufactured by filament winding. The distribution of nonuniform fiber volume fraction induced by the manufacturing process can be observed. The stiffness and buckling characteristics can be influenced by non-uniform fiber volume fraction. In this paper, the effect of non-uniform fiber volume fraction through thickness direction on the torsional buckling load of the cylindrical composite lattice structure was examined. The stiffness variation induced by the non-uniform fiber volume fraction was applied to the finite element model, and buckling analysis was performed. The variations of buckling load with variations of fiber volume fraction were compared. The non-uniform fiber volume fraction reduced the torsional buckling load of the composite lattice structure.

Wear characteristics on particle volume fraction of nano silica composite materials (입자 함유율의 변화에 따른 나노 실리카 복합재료의 마모 특성)

  • Lee, Jung-Kyu;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.492-499
    • /
    • 2013
  • The characteristics of abrasive wear of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The range of volume fraction of silica particles tested are between 11% to 25%. The cumulative wear volume and friction coefficient of these materials on particle volume fraction were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, deboding of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase nonlinear with increase of sliding distance. As increasing the silica particles of these composites indicated higher friction coefficient.

Tensile Fracture Behavior of Glass Fiber/Polypropylene Composites for Various Fiber Volume Fraction (섬유함유율에 따른 GF/PP 복합재료의 인장파괴거동)

  • Koh, Sung-Wi;Um, Yoon-Sung
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.161-165
    • /
    • 2004
  • The main goal of this work is to study the effect of glass fiber volume fraction on the result of tensile test with respect to glass fiber/polypropylene(GF/PP) composites. The tensile test and failure mechanisms of GF/PP composites were investigated in the fiber volume fraction range from 10% to 30%. The tensile strength and the fracture strength increased with the increasing of the fiber volume fraction in the tested range. Fiber pull-out and debonding of this composites increased with the fiber volume fraction in thc tested range. The major failure mechanisms were classified into the debonding, the fiber pull out, the delamination and the matrix deformation.