• Title/Summary/Keyword: volume fractions

Search Result 596, Processing Time 0.028 seconds

A Comparative Study Between Light Extinction and Direct Sampling Methods for Measuring Volume Fractions of Twin-Hole Sprays Using Tomographic Reconstruction

  • Lee, Choong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1986-1993
    • /
    • 2003
  • The spatially resolved spray volume fractions from both line-of-sight data of direct measuring cells and a laser diffraction particle analyzer (LDPA) are tomographically reconstructed by the Convolution Fourier transformation, respectively. Asymmetric sprays generated from a twin-hole injector are tested with 12 equiangular projections of measurements. For each projection angle, a line-of-sight integrated injection rate was measured using a direct sampling method and also a liquid volume fraction from a set of line-of-sight Fraunhofer diffraction measurements was measured using a light extinction method. Interpolated data between the projection angles effectively increase the number of projections, significantly enhancing the signal-to-noise level in the reconstructed data. The reconstructed volume fractions from the direct sampling cells were used as reference data for evaluating the accuracy of the volume fractions from the LDPA.

A 3D finite element static and free vibration analysis of magneto-electro-elastic beam

  • Vinyas., M;Kattimani, S.C.
    • Coupled systems mechanics
    • /
    • v.6 no.4
    • /
    • pp.465-485
    • /
    • 2017
  • In this paper, free vibration and static response of magneto-electro-elastic (MEE) beams has been investigated. To this end, a 3D finite element formulation has been derived by minimization the total potential energy and linear constitutive equation. The coupling between elastic, electric and magnetic fields can have a significant influence on the stiffness and in turn on the static behaviour of MEE beam. Further, different Barium Titanate ($BaTiO_3$) and Cobalt Ferric oxide ($CoFe_2O_4$) volume fractions results in indifferent coupled response. Therefore, through the numerical examples the influence of volume fractions and boundary conditions on the natural frequencies of MEE beam is illustrated. The study is extended to evaluate the static response of MEE beam under various forms of mechanical loading. It is seen from the numerical evaluation that the volume fractions, loading and boundary conditions have a significant effect on the structural behaviour of MEE structures. The observations made here may serve as benchmark solutions in the optimum design of MEE structures.

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Eddy Current Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 와전류법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.112-120
    • /
    • 1998
  • A nondestructive evaluation technique was developed for the quantitative determination of the reinforcement volume fractions in particulate reinforced metal matrix composites. The proposed technique employed a composite micromechanics which accounts for the microstructure of the composite medium together with the measurement of anisotropic electrical conductivity. When the measured conductivity was coupled with the theoretically predicted conductivity, the unknown reinforcement volume fraction was calculated. An analytical model based on the Mori-Tanaka method was described which relates the NDE signatures to the composite microstructure. The volume fractions were calculated using eddy current measurements made on a wide range of silicon carbide particulate ($SiC_p$) reinforced aluminum (Al) matrix composites. The calculated $SiC_p$ volume fractions were in good agreement with the measured volume fractions in the range of 0-30%. The technique was also found to be effective in estimating the total volume percentage of reinforcement and intermetallic compound formed during the processing stage.

  • PDF

Optimal fiber volume fraction prediction of layered composite using frequency constraints- A hybrid FEM approach

  • Anil, K. Lalepalli;Panda, Subrata K.;Sharma, Nitin;Hirwani, Chetan K.;Topal, Umut
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.303-310
    • /
    • 2020
  • In this research, a hybrid mathematical model is derived using the higher-order polynomial kinematic model in association with soft computing technique for the prediction of best fiber volume fractions and the minimal mass of the layered composite structure. The optimal values are predicted further by taking the frequency parameter as the constraint and the projected values utilized for the computation of the eigenvalue and deflections. The optimal mass of the total layered composite and the corresponding optimal volume fractions are evaluated using the particle swarm optimization by constraining the arbitrary frequency value as mass/volume minimization functions. The degree of accuracy of the optimal model has been proven through the comparison study with published well-known research data. Further, the predicted values of volume fractions are incurred for the evaluation of the eigenvalue and the deflection data of the composite structure. To obtain the structural responses i.e. vibrational frequency and the central deflections the proposed higher-order polynomial FE model adopted. Finally, a series of numerical experimentations are carried out using the optimal fibre volume fraction for the prediction of the optimal frequencies and deflections including associated structural parameter.

Nondestructive Determination of Reinforcement Volume Fractions in Particulate Composites : Ultrasonic Method (비파괴적 방법에 의한 입자 강화 복합재료의 부피분율 평가: 초음파법)

  • Jeong, Hyun-Jo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.2
    • /
    • pp.103-111
    • /
    • 1998
  • A nondestructive ultrasonic technique is presented for estimating the reinforcement volume fractions of particulate composites. The proposed technique employs a theoretical model which accounts for composite microstructures, together with a measurement of ultrasonic velocity to determine the reinforcement volume fractions. The approach is used for a wide range of SiC particulate reinforced Al matrix ($SiC_p/Al$) composites. The method is considered to be reliable in determining the reinforcement volume fractions. The technique could be adopted in a production unit for the quality assessment of the metal matrix particulate composite extrusions.

  • PDF

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

The effect of implant drilling speed on the composition of particle collected during site preparation

  • Jeong, Chang-Hee;Kim, Do-Young;Shin, Seung-Yun;Hong, Jong-Rak;Kye, Seung-Beom;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.253-259
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of implant drilling speed on the composition of particle size of collected bone debris. Methods: $Br{\aa}nemark$ $System^{(R)}$ drills were used to collect bone debris from 10 drilling holes (1 unit) at 1,500 rpm (Group A) and 800 rpm (Group B) in bovine mandible. After separating particles by size into > 500 ${\mu}m$, between 250 ${\mu}m$ and 500 ${\mu}m$, and < 250 ${\mu}m$ fractions, particle wet volume, dry volume, and weight were measured and the proportion of 3 fractions of bone debris to total wet volume, dry volume and weight was calculated as wet volume % , dry volume % and weight %. Results: No significant differences were found between Group A and B in wet volume, dry volume, and weight. However, of >500 ${\mu}m$ fractions, Group B had significantly higher wet volume %(P = 0.0059) and dry volume %(P = 0.0272) than in Group A. Conclusions: The drilling speed influenced the composition of particle size in collected drilling bone debris. The drilling in 800 rpm produced the more percentage of large particles than in 1,500 rpm. However, the drilling speed didn't effect on total volume of and weight of bone debris.

A Study about Mechanical Properties of GFRP Laminates depending on Fiber Volume Fraction (섬유체적함유율의 영향에 따른 GFRP적층판의 기계적 특성에 관한 연구)

  • 국중석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.225-230
    • /
    • 2003
  • Domestic small and medium ship companies have lack of leisure boat technologies and especially they have a problem about its low performance because of the overweight of boat hull. So it is necessary to have alternative manufacturing process to improve the mechanical properties of composite material. In this study, a vacuum curing system was developed as an alternative manufacturing process and then changed the fiber volume fractions of GFRP laminates. The properties of GFRP laminates such as void contents, Young's modulus and fracture toughness were determined for various fiber volume fractions.

  • PDF