• Title/Summary/Keyword: water immersion thawing

Search Result 14, Processing Time 0.038 seconds

Comparison of the Quality of Frozen Skipjack Tuna Katsuwonus pelamis Thawed by Vacuum and Water Immersion (진공 해동과 침수 해동에 의한 냉동 가다랑어(Katsuwonus pelamis)의 품질 차이에 관한 연구)

  • Lee, Tae-Hun;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.635-639
    • /
    • 2012
  • Thawing is very important in tuna canning because it affects the yield and quality of the canned tuna, and productivity. The effects of vacuum thawing on the quality, yield, and thawing times of frozen skipjack were compared with conventional water immersion thawing. The time required to thaw frozen skipjack tuna (weight 2.5-3.0 kg) from $-10^{\circ}C$ to $-2^{\circ}C$ was 75, 60, and 37 min at a pressure of 17, 23, and 31 mmHg, respectively, corresponding to temperatures of 20, 25, and $30^{\circ}C$. The thawing time decreased with increasing pressure. Vacuum thawing shorten the thawing time by 58-80% compared with water immersion thawing at $20^{\circ}C$, and there was less difference between the core and skin temperatures than with water immersion thawing. No significant change in pH or histamine was observed according to thawing method, while the volatile basic nitrogen (VBN), trimethylamine (TMA), and K value were lower with vacuum thawing than water immersion thawing. Based on these results, we believe that vacuum thawing minimizes the biochemical and microbial changes that occur while thawing frozen skipjack tuna.

Effects of Water or Brine Immersion Thawing Combined with Ultrasound on Quality Attributes of Frozen Pork Loin

  • Hong, Geun-Pyo;Chun, Ji-Yeon;Jo, Yeon-Ji;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.1
    • /
    • pp.115-121
    • /
    • 2014
  • This study explored the effects of water or brine (2% NaCl, w/v) immersion thawing combined with ultrasound treatment (40 kHz, 150 W) on the quality characteristics of pork. Ultrasound treatment of pork was conducted in two cold media (at $4^{\circ}C$), water and 2% (w/v) brine, respectively. Because the ultrasound treatment caused temperature increase in the media from $4^{\circ}C$ to $16^{\circ}C$, the qualities of pork thawed by ultrasound were compared with those thawed by immersion either in water or brine where the temperature was being maintained at either $4^{\circ}C$ (low temperature control) or $17^{\circ}C$ (high temperature control). The ultrasound treatment resulted in rapid thawing of pork where the thawing rate was similar to those thawed in the $17^{\circ}C$ media. For quality characteristics, ultrasound-treated pork in brine had an advantage of less cooking losses when comparing to the control. In particular, ultrasound treatment in brine exhibited the lowest shear force (or highest tenderness) among the freezing/thawing treatments. Although the ultrasound processing in brine caused discoloration of the pork, this thawing technique had potential to be applied as a commercial thawing technology for frozen foods.

Effects of Brine Immersion and Electrode Contact Type Low Voltage Ohmic Thawing on the Physico-chemical Properties of Pork Meat (염수 침지식 및 전극 접촉식 저전압 Ohmic 해동 처리가 돈육의 이화학적 특성에 미치는 효과)

  • Hong, Geun-Pyo;Min, Sang-Gi;Ko, Se-Hee;Shim, Kook-Bo;Seo, Eun-Ju;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.27 no.4
    • /
    • pp.416-423
    • /
    • 2007
  • This study investigated the effect of ohmic thawing on the physicochemical properties of pork meat. The physicochemical properties of pork meat thawed by brine immersion and electrode contact ohmic systems were compared. A more rapid thawing rate was seen with the electrode contact thawing system than with brine immersion. No significant differences in pH were found with increasing voltage for both thawing methods (p>0.05). Increasing the voltage level tended to decrease drip loss, resulting in increased water holding capacity. The shear forces of pork thawed at 50 V did not differ from the control (p>0.05) for both thawing methods. Although significantly high TBARS (p<0.05) values were found at 20 and 40 V for immersion, and 0 V for contact thawing, increasing the voltage level tended to decrease the TBARS values. Regarding TVBN, no significant effect was observed with increasing voltage levels (p>0.05). The total color difference of pork was significantly higher (p<0.05) with immersion thawing than with electrode contact thawing. These results indicate that brine immersion thawing is favorable at high voltage levels, while lower voltage levels are applicable for electrode contact thawing.

Ohmic Thawing of a Frozen Meat Chunk (Ohmic Heating을 이용한 동결육의 해동)

  • Yun, Cheol-Goo;Lee, Do-Hyun;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.842-847
    • /
    • 1998
  • Ohmic thawing in combination with conventional water immersion thawing was investigated. Frozen meat chunks $(10{\times}10{\times}10{\;}cm)$ were immersed in a water reservoir $(12{\times}12{\times}12{\;}cm)$ which temperature was maintained at $10^{\circ}C{\;}or{\;}20^{\circ}C$, and were positioned between two stainless-steel electrodes $(10{\times}10{\;}cm)$ having no direct contact with the samples. Alternating current $(60{\;}V{\sim}210{\;}V)$ at various frequency $(60{\;}Hz{\sim}60{\;}kHz)$ was used to generate internal heat by the electrical resistance. When the frequency was fixed to 60Hz, thawing time was reduced as the voltage increased. Frequency changes gave no significant effect on thawing time. Ohmically-thawed samples treated with lower voltage showed lower drip loss and higher water holding capacity.

  • PDF

Changes in Quality of Hanwoo Bottom Round under Different Freezing and Thawing Conditions (한우육의 냉동 및 해동 조건에 따른 품질 변화)

  • Chun, Ho Hyun;Choi, Eun Ji;Han, Ae Ri;Chung, Young Bae;Kim, Jin Se;Park, Suk Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.2
    • /
    • pp.230-238
    • /
    • 2016
  • This study examined the effects of freezing and thawing conditions on quality of Hanwoo bottom round. The beef samples were frozen by air blast freezing at $-20^{\circ}C$ or ethanol immersion freezing at $-70^{\circ}C$ and then stored at $-20^{\circ}C$ for 10 days. After 10 days of storage, the frozen samples were thawed with air blast thawing at $4^{\circ}C$ or water immersion thawing at $4^{\circ}C$ and subjected to subsequent analyses of drip loss, water holding capacity, thiobarbituric acid reactive substance (TBARS), volatile basic nitrogen (VBN), total aerobic bacteria, and microstructure. Drip loss significantly increased in samples treated with air blast freezing compared to ethanol immersion freezing, whereas freezing and thawing processes had no significant impact on water holding capacity of the samples. Thawing conditions had a much stronger influence on the TBARS and VBN of the samples than freezing conditions. There was no significant difference in the population of total aerobic bacteria among the four samples subjected to one freeze-thaw cycle. In addition, to analyze the effects of freeze-thaw cycle on the quality of beef, three freeze-thaw cycles were performed during storage. Multiple freeze-thaw cycles increased drip loss, TBARS, and VBN and decreased water holding capacity, accelerating microstructural damage. These data indicate that Hanwoo bottom round can be rapidly frozen and thawed by using ethanol immersion freezing and water immersion thawing methods with minimal impact on meat quality.

Freezing-Thawing Resistance of Fiber Reinforced Polymers in Strengthening RC Members (구조보강용 FRP 복합체의 동결용해 저항성 평가 연구)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.182-189
    • /
    • 2010
  • The strengthening performance of FRPs(Fiber Reinforced Polymers) is directly affected by the environmental conditions such as freezing-thawing and moisture because FRPs are usually bonded on the concrete surface. It is, therefore, strongly required to evaluate a durability of bond between FRPs and concrete as well as FRP materials itself. The freezing-thawing resistance of FRPs is evaluated in this study with the variables of freezing-thawing conditions, types of FRP and freezing-thawing cycles. From the test results, it is found that tensile strength and pull-off strength of CFRP are not affected by the freezing-thawing. On the other hands, those of GFRP show a little degradation because of continuous water immersion during thawing process. But, cautions are needed on the bond durability between FRPs and concrete in case of continuous water supplying from adjacent to the concrete.

Applications of Low-voltage Ohmic Process Combined with Temperature Control System to Enhance Salting Process of Pork

  • Hong, Geun-Pyo;Chun, Ji-Yeon;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.3
    • /
    • pp.293-300
    • /
    • 2012
  • This study investigated the effects of a low-voltage ohmic heating process (2.5 and 3.8 V/cm) on the thawing characteristics and NaCl diffusion of pork. The thawing rate of pork was dependent on the applied voltages and brine salinities, and few differences were obtained in pork quality parameters (color, water-holding capacity, and shear force) regarding the different treatments. The NaCl concentration of pork after ohmic thawing was higher than that following brine-immersion thawing, however, the NaCl diffusion did not differ from when fresh meat was immersed in brine. For application of the ohmic process in fresh pork, various ohmic pulses were generated in order to prevent the meat from overheating, and the results indicated that the ohmic process was a better way to enhance NaCl diffusion compared with immersing pork at high temperature. Although the mechanisms involved in NaCl diffusion at low-voltage electric field strength were unclear, the present study demonstrated that the ohmic process has a potential benefit in the application of meat processing.

Durability Characteristics of Low Strength Fly ash-Cement Composites (저강도 플라이애시-시멘트 복합체의 내구특성)

  • 원종필;신유길;이용수;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.142-147
    • /
    • 2000
  • Durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content was examined. The mix proportions used for flowable fill are selected to obtain low-strength material in the 10 to 15kgf/㎥ range. The optimized flowable fill was consisted of 60kgf/㎥ cement content, 280kgf/㎥ fly ash content, 1400kgf/㎥sand content, and 320kgf/㎥water content. Subsequently, durability tests including permeability warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted The test results indicated that flowable fill has has acceptable durability characteristics.

  • PDF

FACTORS INVOLVED IN THAWING OF FROZEN ALASKA POLLACK AND REFREEZING OF THE FILLET (명태 FILLET 제조를 위한 냉동원료의 해동방법과 가공품의 재동결방법에 관한 연구)

  • CHOE Wi-Kyung;PARK Yung-Ho;LEE Kang-Ho;CHANG Dong-Suck;KIM Mu-Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.107-117
    • /
    • 1975
  • Alaska pollack caught in the Northern Pacific Ocean and frozen aboard vessel are skipped to the plant and processed into frozen fillets. In the present paper quality changes during thwaing, refreezing and storage at $-20^{\circ}C$ are discussed. Natural, running-water, vacuum and steam thawing were employed as thawing methods. And contact plate, air blast, immersion in dry ice-alcohol solution freezing and storage at $-5^{\circ}C$ were applied to refreeze the thawed fillets. As quality factors content of drip released, salt-extractable protein, VBN, DNA in the drip and pH were determined. In addition, bacteriological tests were also carried out along with the whole process. In thawing of round material, the vacuum thawing was more effective than any other method, resulting in drip, salt-extractable protein $(N\%)$, VBN and DNA as $4.4\%,\;1.82\%,\;16.21mg\%$ and $13.70\;{\mu}g/ml$, respectively. Storage at $-5^{\circ}C$ as refreezing method yielded lower in drip and DNA content but similar to or slightly higher in both salt-extractable protein and VBN, which might postulate that the quality of the frozen fillet depends not largely on the secondary freezing but on the conditions of thawing and primary freezing. It seemed that most of the bacterial flora in thawed fillet came from skin and viscera of fish, worker's hands, utensils and other processing facilities, since sanitary indicative bacteria were not detected in the frozen flesh of round Alaska pollack. Bacterial quality of fillet varied with thawing methods, vacuum thawing appeared more sanitative compared with other methods as natural, running-water, and steam thawing. Bacterial colonies isolated from the thawed fillet were composed of $73.8\%$ Gram negative rod shape, $4.9\%$ Gram positive rod shape, $18.0\%$ cocci, and $3.3\%$ yeast. Decreasing rate of coliform group of the fillet during the storage at $-20^{\circ}C$ for 30 days was more than $70\%$ and that of plate count was less than of coliform group.

  • PDF

Effects of Freezing and Thawing Treatments on Natural Microflora, Inoculated Listeria monocytogenes and Campylobacter jejuni on Chicken Breast (냉동과 해동처리가 계육 가슴살의 natural microflora, 접종된 Listeria monocytogenes와 Campylobacter jejuni에 미치는 영향)

  • Choi, Eun Ji;Chung, Young Bae;Kim, Jin Se;Chun, Ho Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The effects of freezing and thawing conditions on microbiological quality and microstructure change of inoculated (Listeria monocytogenes and Campylobacter jejuni) and non-inoculated chicken breasts were investigated. Chicken breasts were frozen with air blast freezing (-20, -70, and $-150^{\circ}C$), ethanol ($-70^{\circ}C$) and liquid nitrogen ($-196^{\circ}C$) immersion freezing. There were no significant differences on the populations of L. monocytogenes inoculated with chicken breasts under different freezing conditions. However, air blast freezing ($-20^{\circ}C$) resulted in significant reductions for total aerobic bacteria and C. jejuni compared to the control and other freezing treatments. The frozen samples were thawed with (hot or cold) air blast, water immersion, and high pressure thawing at $4^{\circ}C$ and $25^{\circ}C$. the populations of total aerobic bacteria, and yeast and mold in the frozen chicken breast increased by 5.78 and 4.05 log CFU/g after water immersion thawing ($25^{\circ}C$) treatment. After five freeze-thaw cycles, the populations of total aerobic bacteria, yeast and mold, and C. jejuni were reduced by 0.29~1.40 log cycles, while there were no significant differences (P > 0.05) in the populations of L. monocytogenes depending on the freeze-thaw cycles. In addition, the histological examination of chicken breasts showed an increase in spacing between the muscle fiber and torn muscle fiber bundles as the number of freeze-thaw cycles increased. These results indicate that freezing and thawing processes could affect in the levels of microbial contamination and the histological change of chicken breasts.