• Title/Summary/Keyword: water surface area

Search Result 2,731, Processing Time 0.033 seconds

Area Effect on Galvanic Corrosion of Condenser Materials with Titanium Tubes in Nuclear Power Plants (Titanium 전열관을 사용하는 원전 복수기 재료의 Galvanic Corrosion에 미치는 면적의 영향)

  • Hwang, Seong-Sik;Kim, Joung-Soo;Kim, Uh-Chul
    • Nuclear Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.507-514
    • /
    • 1993
  • Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, if this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R$_1$(surface area of carbon steel/surface area of Ti) and R$_2$(surface area of carbon steel/surface area of Cu) are very important for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when the ratio of surface area of Fe/ surface area of Al Brass is 1 while it is 570 mpy when this ratio is 10$^{-2}$ . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R$_1$ and R$_2$ on the polarization curve.

  • PDF

Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types (도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법)

  • Kim, Youngran;Hwang, Seonghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

Temporal and spatial fluctuation characteristics of sea surface temperature in Yeosu Bay, Korea (여수해만 수온의 시공간적 변동특성)

  • CHOO, Hyo-Sang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.4
    • /
    • pp.322-339
    • /
    • 2020
  • Temporal and spatial fluctuations of surface water temperature in Yeosu Bay for the period from 2010 to 2011 were studied using the data from temperature monitoring buoys deployed at 32 stations in the south coast of Korea. Temperatures in the northern part of the bay are higher in summer and lower in winter than in the southern part of the bay. The lowest and highest temperature of the annual mean are found at the eastern coast of POSCO and at the west of Dae Island, respectively. Cold water masses appear at estuarine area when the discharge of Sumjin river is affluent. Amplitude of temperature fluctuation whose period is less than semi-diurnal is largest at Hadong coast and around Dae Island. Spectral analysis of surface water temperature shows a significant peak at a periodic fluctuation of 0.5 to 24 days and about 15-day period of predominant fluctuation is most frequent in Yeosu Bay. From the cross-correlation analysis of temperature fluctuations, Yeosu Bay can be classified into six areas; the south area affected by South Sea of Korea, the mixed area in the center of the bay, the estuarine area affected by river discharge at the north of the bay, the hot waste water area near Hadong coast, the area around Dae Island and the area near Noryang Channel affected by the water in Jinju Bay, respectively.

An Analysis on Observational Surface and upper layer Current in the Yellow Sea and the East China Sea

  • Kui, Lin;Binghuo;Tang, Yuxiang
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2002
  • The characteristics of surface circulation in the Yellow Sea and the East China Sea are discussed by analyzing a great deal of current data observed by 142 sets of mooring buoy and 58 sets of drifters trajectories collected in the Yellow Sea and the East China Sea through domestic and abroad measurements. Some major features are demonstrated as bellow: 1) Tsushima Warm Current flows away from the Kuroshio and has multiple sources in warm half year and comes only from Kuroshio surface water in cold half year. 2) Taiwan Warm Current comes mainly from the Taiwan Strait Water in warm half year and comes from the intruded Kuroshio surface water and branches near 27N in cold half year. 3) The Changjiang Diluted Water turns towards Cheju Island in summer and flows southward along the coastal line in winter. 4) The study sea area is an eddy developing area, especially in the southern area of Cheju Island and northern area of Taiwan.

Variation of Filamentous Periphyton Chlorophyll-a in accordance with Water Velocity and Specific Surface Area of Media in Small Urban Stream (도시 소하천에서 유속, 비표면적에 따른 사상형 부착조류의 Chlorophyll-a 변화)

  • Ahn, Chang Hyuk;Joo, Jin Chul;Lee, Saeromi;Oh, Ju Hyun;Ahn, Hosang;Song, Ho Myeon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.551-558
    • /
    • 2013
  • The feasibility of water supply as in-stream flow for Mangwall stream was analyzed in terms of water quality and cultivation periphyton using two different types of water resources (e.g., surface water and bank filtration from Han River basin) and three different types of media (e.g., tile, concrete and pebble). The concentrations of organic and inorganic contaminants from the bank filtration were lower than those from surface water by 17.5 - 55.0%. Using water samples collected from Mangwall stream, surface water, and bank filtration, chlorophyll-a, phaeopigment, and growth rate of periphyton were investigated. During 30 day incubation for each water sample, it was observed that filamentous cyanobacteria, Oscillatoriaceae, accounted for 98%, and water velocity of 5 cm/s was optimum for the in situ filamentous cyanobacteria growth. Also, it was deducted for water velocity and chl-a to have an inverse correlation. Meanwhile, the greater the specific surface area of media, the higher the concentration of chl-a. From these results, both water velocity and specific surface area of media should be considered as an combined parameter to deter the growth of filamentous cyanobacteria.

A proposal of unit watershed for water management based on the interaction of surface water and groundwater (지표수-지하수 연계 기반의 통합수자원 관리를 위한 단위유역 제안)

  • Kim, Gyoo-Bum;Hwang, Chan-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.755-764
    • /
    • 2020
  • In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 ㎢ can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.

Water Balance on Paddy Fields in Jedae Cheon Basin (제대천 유역 답지대의 물수지)

  • 안세영;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.56-66
    • /
    • 1990
  • To investigate the status of irrigation water use and the degree of repeated use of irrigation water, observations for water balance analysis were made during the irrigation periods in 1986 and 1987 crop year. The total area of studied site is 1,441 ha. The site is a major portion of Jedaecheon basin which is located in Bubuk-myeon, Miryang-gun, Gyeongnam Province. The studied area was subdivided into six small blocks. The water balance analysis for these subdivided blocks were carried out considering characteristics of each block. Obtained results are as follow: 1.In mountainous sloppy paddy area(less than 7% slope), the surface inflow was 5A mm/day in average that is one third of the surface inflow into plain paddy area ; 16.7 mm/day. 2.The surface inflows at the vegetative stage and the ripening stage were 15.5 mm/day and 10.4 mm/day, respectively. Those figures were larger than the actual consumptive use at respective same stages ; 13.3 mm/day and 9.2 mm/day, respectively. Whereas, the surface inflow at generative stage was 12.5 mm/day which was less than 14.0 mm/day ; the actual consumptive use. 3.The range of the variation of water storage term was 1 mm/day. This means that there were no change in depth of ponded water on paddy fields. The relationship between the variation of water storage(AS) and the variation of ground water table(H) could be expressed as follow: : AS=0.14H+0.26 4.The ground water inflow: into the transition region ; paddy fields which are located continuously from the mountainous area to the plain area, was larger than the out flow from this region, in general. Rowever, in the plain region where the ground water utilization was predominant, the ground water outflow from this region was larger than inflow: to this region. The relationship between the ground water flow(G2- G1) and the consumptive use in large paddy area(D1-D2) could be expressed as follow: (G2-G1) =0.95(D1-D2) -3.79

  • PDF

Full-scale Case Study on the Relationship between Surface Characteristics of GAC and TOC Removal (입상활성탄의 표면특성과 TOC제거와의 상관성 연구)

  • Baek, Youngae;Joe, Woohyun;Hong, Byungeui;Kim, Kwangho;Choi, Young-june
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.323-328
    • /
    • 2008
  • During the full-scale water treatment operation at "G" Water Treatment Plant in Seoul, we investigated changes in pore volume distribution and specific surface area of GAC with time. The pore volume of the used GAC decreased to the level below 0.6 cc/g while that of the brand new GAC was ranged 0.7~0.9 cc/g. The specific surface area of GAC pores changed within the range between $1100{\sim}1200m^2/g$ and $700{\sim}800m^2/g$. Bacteria attached to the surface of GAC shows a gradual increase ($0.4{\time}10^6{\sim}8.5{\time}10^6CFU/g$) under scanninig electron microscope (SEM). TOC removal was enhanced due to growth of the attached bacteria on GAC. It was found that TOC removal was closely related with physical parameters (pore volume, specific surface area) linearly under the investigated conditions. The used GAC need to be exchanged into new one or re-generated to remove organic matters (TOC) effectively from the finished drinking water.

A Study on the Calculation of Stormwater Utility Fee Using GIS based Impervious Surface Ratio Estimation Methodology (GIS 기반 불투수율 산정방법론을 활용한 강우유출수 부담금 모의산정 방안 연구)

  • Yoo, Jae Hyun;Kim, Kye Hyun;Choi, Ji Yong;Lee, Chol Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Korea needs to develop a rational system to separate stormwater utility fee from current sewerage fee. In this study, the scenario for calculating stormwater utility fee of Bupyeong-gu was suggested and the results were considered. For this purpose, the application of stormwater utility fee overseas and current domestic system were analyzed. A three step calculating scenario considering suitable domestic situation and impervious surface area was suggested. Water, sewerage usage, and hydrant data were collected. The total amount of water and sewerage fees for land use were calculated. The sewerage fee of Bupyeong-gu for the year 2014 was 21,685,446,578 won. Assuming that 40% of this amount was the cost associated to stormwater, the result showed that the fees for residential area in third step decreased by 0.77% compared to that of the first step. For commercial area, the stormwater utility fee decreased by 36.87%. For industrial area, although the consumption of water was similar to that of commercial area, the stormwater utility fee increased by 8.35%. For green area, the fee increased by 37.46%. This study demonstrated that the calculation of actual stormwater utility fee using impervious surface map and impervious Surface Ratio Estimation Methodology developed in previous studies is feasible.

Contributions of emergent vegetation acting as a substrate for biofilms in a free water surface constructed wetland

  • Zhao, Ruijun;Cheng, Jing;Yuan, Qingke;Chen, Yaoping;Kim, Youngchul
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • This study assessed the contribution of emergent vegetation (Phragmites australis, Typha latifolia, and Nelumbo nucifera) to the submerged surface area, the amount of biofilms attached to the submerged portions of the plants, and the treatment performance of a free water surface (FWS) constructed wetland. Results showed that a 1% increase ($31m^2$) in the vegetative area resulted in an increase of $220m^2$ of submerged surface area, and 0.48 kg Volatile Suspended Solids (VSS) of attached biofilm. As the vegetation coverage increased, effluent organic matter and total Kjeldahl nitrogen decreased. Conversely, a higher nitrate concentration was found in the effluent as a result of increased nitrification and incomplete denitrification, which was limited by the availability of a carbon source. In addition, a larger vegetation coverage resulted in a higher phosphorus in the effluent, most likely released from senescent biofilms and sediments, which resulted from the partial suppression of algal growth. Based on the results, it was recommended that constructed wetlands should be operated with a vegetation coverage of just under 50% to maximize pollutant removal.