• Title/Summary/Keyword: wave transformation

Search Result 345, Processing Time 0.03 seconds

Prediction Wave Transformation for Using Wave Spceturm (스펙트럼을 이용한 파랑변형 예측)

  • 박정철;김재중
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.235-242
    • /
    • 1999
  • Wave which propagate from the offshore cause transformation of diffraction, refraction, and reflection etc. in coming in the coastal by depth change. Especially, Wave strongly show the charcateristics of rancom wave in the coastal zone. Developed wave model until a recent date analysed regular waves with height and period equal to those of the significant wave, In case of Monochromatic wave, it can be analysed fine in the offshore, but differ from in coastal zone. In this study, form of governing equation is parabolic mild slope equation. This model calculated random wave for using frequency spectrum and directional spectrum from input data condition of wave. This model is applied to Vincent shoal and compared with laboratory experimental data. The results agreed well with laboratory data.

Systematic Approach for Predicting Irregular Wave Transformation (불규칙파랑의 계통적 취급수법)

  • 권정곤
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-95
    • /
    • 1990
  • It can be assumed that the ocean waves consist of many independent pure sinusoidal components which progress in arbitrary directions. To analyze irregular sea waves, both the spectrum method and the individual wave method have been used. The spectral approach is valid in the region where the water depth is deep and the linear property of velocity distribution is predominent, while the individual wave analysis method in the region where the water depth is shallow and the wave nonlinearity is significant. Therefore, to investigate the irregular wave transformation from the deep water to the shallow water region, it is necessary to relate the frequency spectrum which is estimated by the spectrum analysis method to the i oint probability distribution of wave height, period and direction affected by the boundary condition of the individual wave analysis method. It also becomes important to define the region where both methods can be applied. This study is a part of investigation to establish a systematic approach for analyzing the irregular wave transformation. The region where the spectral approach can be applied is discussed by earring out the experiments on the irregular wave transformation in the two-dimensional wave tank together with the numerical simulation. The applicability of the individual wave analysis method for predicting irregular wave transformation including wave shoaling and breaking and the relation between frequency spectrum and joint probability distribution of wave height and period are also investigated through the laboratory experiment and numerical simualtion.

  • PDF

Prediction Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;이정만
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.04a
    • /
    • pp.75-81
    • /
    • 2000
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develop as wave-current equation type to investigate the effect of wave-current interaction. This wave-current model was applied to the Kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Prediction of Wave Transformation in the Kwangan Beach (광안해역에서의 파랑변형예측)

  • 박정철;김재중;김인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

Review of Transformation of Wave Spectra Due to Depth and Current (수심 및 흐름에 의한 파낭 스펙트럼의 변화에 대한 고찰)

  • Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.225-230
    • /
    • 1992
  • An attempt is made to assemble and synthesize recent publications which may contribute to our capability for understanding the transformation of wave spectra in finite-depth water or in the presence of current. This review is limited essentially to the effects of shoaling and current on one-dimensional transformation of wave spectra and examining the adequacy of the approximation of irregular waves by a monochromatic wave in modeling of wave transformation in coastal areas.

  • PDF

A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow (투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석)

  • Kim, In-Chul
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.

A study on the Characteristics of Irregular Wave Transformation in the vincinity of Ulsan New Port by using the DELFT-3D (DELFT-3D를 이용한 울산신항 주변해역의 불규칙파랑변형에 관한 연구)

  • Kim Jae-Joong;Kim Nam-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.29 no.3 s.99
    • /
    • pp.257-262
    • /
    • 2005
  • Environmental problems and safety problems in coastal area is one of the most important factors for designing coastal structures and maintaining facilities in coastal zone. And thus study on Wave transformation around coastal area is very important to develope a new port or on industrial area. Delft 3D-WAVE is applied to Ulsan new port area and the culculated results are analysed and compared with measured data Delft 3D-wave module is based on SWAN model which considers wave shoaling and refraction for irregular wave. This module also covers wind effect, bottom friction. white-capping and wave breaking effect. The results of this study show a good agreement with measured data and thus Delft 3D-WAVE module can be applied to simulate irregular wave transformation in coastal area.

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Mohammad Tahaye Abadi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.

Numerical Simulation of Longshore Current due to Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤;양윤모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.72-82
    • /
    • 1992
  • To accurately estimate nearshore current in shallow water regions. it is necessary to investigate the irregular wave transformation characteristics and radiation stress produced by random sea waves. This research is to investigate the application or the individual wave Analysis Method. the Component Wave Analysis Method and Representative Wave Analysis Method in the shallow water region. These methods were estimated by wave shallowing transformation when the waves propagate from deep water to shallow water region b)r generating regular waves, two component waves and irregular waves (Bretschneider-Mitsuyasu type). That is, the Indivisual Wave Analysis Method is to investigate from the viewpoint of shallow water transformation of wave statistical characteristics and their zero-down-crossing waves (wave height period and wave celerity). And the component Wave Analysis Method is to investigate from the view point of shallow water transformation of basic frequency component wave and their interference frequency component wave. In addition, this research is to compare the measured mean water level elevation with the calculated one from radiation stress of irreguar waves that is assumed in the three methods above.

  • PDF